Abstract:
A multi-mode pressure relief valve (12) includes a body (28) having fluid inlet (30) and outlet (32) ports and a compressed gas inlet port (34). The fluid ports and gas port isolated from one another. A reciprocating piston (58) is in communication with the gas port. A valve stem (44) is movable between an open condition and a closed position to permit and stop flow communication between the fluid ports. A spring is disposed between the valve stem and the piston and urges the piston and valve stem away from one another. The valve is operable in at least three modes, an operating mode in which the valve is open, the stem is spaced from the piston, and the piston applies pressure on the stem, and in which the pressure is balanced by fluid pressure the inlet, a zero- state mode in which the valve is open, the stem is spaced from the piston, the spring (50) is in a relaxed state, and the piston applies no pressure on the valve stem, and a relief mode in which the valve is open, the stem contacts or is in close proximity to the piston and the spring is in a compressed state due to the fluid pressure.
Abstract:
Strand positional guide implements, for use in connection with hot melt adhesive strand coating applicator assemblies, comprise a plurality of V-shaped strand guide slots wherein the apex portions are oriented outwardly away from the hot melt adhesive material dispensing nozzles. Accordingly, an enlarged air space is effectively defined between the plurality of elongated strands and its respective hot melt adhesive material dispensing nozzle such that the plurality of elongated strands are not adversely affected by the heat or thermal radiation generated by or emanating from the hot melt adhesive material dispensing nozzles thereof.
Abstract:
Strand positional guide implements, for use in connection with hot melt adhesive strand coating applicator assemblies, comprise a plurality of V-shaped strand guide slots wherein the apex portions are oriented outwardly away from the hot melt adhesive material dispensing nozzles. Accordingly, an enlarged air space is effectively defined between the plurality of elongated strands and its respective hot melt adhesive material dispensing nozzle such that the plurality of elongated strands are not adversely affected by the heat or thermal radiation generated by or emanating from the hot melt adhesive material dispensing nozzles thereof.
Abstract:
A modular system (100), for delivering hot melt adhesive materials, comprises a modular metering assembly (104), having metering stations disposed therein, that is able to be attachably and detachably mounted upon a modular tank assembly (102). Alternatively, one or more of the metering stations may be disposed externally of the modular metering assembly, and alternatively still further, one or more additional modular metering assemblies may be attachably and detachably connected to the first modular metering assembly. Also disclosed is a closed-loop fluid pressure control system, for independently controlling the pressure of the hot melt adhesive material being conveyed to the metering devices, whereby the working pressures of the hot melt adhesive materials being conveyed to the metering devices can have different working pressures.