Abstract:
A process for the selective oxidation of olefins to epoxides comprising the step of contacting the olefin (propylene) with an oxidant (hydrogen peroxide) in the presence of a Lewis acid oxidation catalyst (MTO), organic base (pyridine or its N-oxide), in a solvent system comprising an organic water-miscible solvent (methanol); and adding a pressurizing gas (nitrogen) to increase the pressure, whereby olefin is further dissolved in organic solvent system to increase the selectivity and yield of the desired epoxide (propylene oxide).
Abstract:
A process is provided for carrying out an oxidation on a feed including levulinic acid and/or a levulinic acid oxidation precursor to succinic acid, one or more furanic oxidation precursors of 2,5-furandicarboxylic acid and a catalytically effective combination of cobalt, manganese, and bromide components for catalyzing the oxidation of the levulinic acid component and of the one or more furanic oxidation precursors to produce both succinic acid and 2,5-furandicarboxylic acid products, which process comprises supplying the feed to a reactor vessel, supplying an oxidant, reacting the levulinic acid component and the one or more furanic oxidation precursors with the oxidant to produce both succinic acid and 2,5-furandicarboxylic acid (FDCA) and then recovering the succinic acid and FDCA products. A crude dehydration product from the dehydration of fructose, glucose or both, including 5-hydroxymethylfurfural, can be directly oxidized by the process to produce 2,5-furandicarboxylic acid and succinic acid.
Abstract:
A process is provided for carrying out an oxidation on a sprayable feed including a furanic substrate to be oxidized and a catalytically effective combination of cobalt, manganese, and bromide components for catalyzing the oxidation of the furanic substrate, which process comprises spraying the feed into a reactor vessel as a mist, supplying an oxidant, reacting the furanic substrate and the oxidant, and managing the exothermic temperature rise due to the reaction through a selection and control of the operating pressure within the reactor vessel. A crude dehydration product from the dehydration of fructose, glucose or both, including 5-hydroxymethylfurfural, can be directly oxidized by the process to produce 2,5-furandicarboxylic acid in surprisingly increased yields.
Abstract:
A method for increasing ozone concentration in a liquid can include: providing a gas having ozone; introducing the ozone-containing gas into a liquid, wherein the liquid and ozone combination has a temperature between about 0.8 and about 1.5 times the critical temperature of ozone; and increasing isothermally, the pressure of the ozone-containing gas above the liquid to about 0.3 to about 5 times the critical pressure of ozone so as to increase the ozone concentration in the liquid. The temperature is expressed in absolute units (Kelvin or Rankin). The method can be used for removing ozone from a gas or for purifying ozone. The liquid having a high ozone concentration can be used for ozonolysis of a substrate.
Abstract:
A process for the selective oxidation of olefins to epoxides comprising the step of contacting the olefin (propylene) with an oxidant (hydrogen peroxide) in the presence of a Lewis acid oxidation catalyst (MTO), organic base (pyridine or its N-oxide), in a solvent system comprising an organic water-miscible solvent (methanol); and adding a pressurizing gas (nitrogen) to increase the pressure, whereby olefin is further dissolved in organic solvent system to increase the selectivity and yield of the desired epoxide (propylene oxide).
Abstract:
A class of complexes having the formula M(R)X2Y, where M is a transition metal, X is halogen, Y is a pharmaceutically acceptable counterion or ligand, and R is meso-2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]-heptadeca-1(17), 13, 15-triene, is an effective catalyst for the decomposition of peroxynitrite at physiological pH.
Abstract:
A process is provided for carrying out an oxidation on a feed including levulinic acid and/or a levulinic acid oxidation precursor to succinic acid, one or more furanic oxidation precursors of 2,5-furandicarboxylic acid and a catalytically effective combination of cobalt, manganese, and bromide components for catalyzing the oxidation of the levulinic acid component and of the one or more furanic oxidation precursors to produce both succinic acid and 2,5-furandicarboxylic acid products, which process comprises supplying the feed to a reactor vessel, supplying an oxidant, reacting the levulinic acid component and the one or more furanic oxidation precursors with the oxidant to produce both succinic acid and 2,5-furandicarboxylic acid (FDCA) and then recovering the succinic acid and FDCA products. A crude dehydration product from the dehydration of fructose, glucose or both, including 5-hydroxymethylfurfural, can be directly oxidized by the process to produce 2,5-furandicarboxylic acid and succinic acid.
Abstract:
Oxidation process can include: introducing small droplets of liquid reaction mixture having oxidizable reactant, catalyst, and solvent into a reaction zone containing oxygen and diluent gas; and oxidizing the reactant with the oxygen at a suitable reaction temperature and a suitable reaction pressure to produce an oxidized product. The liquid reaction mixture can have an aromatic feedstock having an oxidizable substituent as the oxidizable reactant. The oxidized product can include an aromatic compound having at least one carboxylic acid. For example, the aromatic feedstock can include a benzene ring having at least one oxidizable alkyl substituent, furan hetero-ring having at least one oxidizable alkyl substituent, a naphthalene poly-ring having at least one oxidizable alkyl substituent, derivatives thereof, and mixtures thereof.
Abstract:
Oxidation process can include: introducing small droplets of liquid reaction mixture having oxidizable reactant, catalyst, and solvent into a reaction zone containing oxygen and diluent gas; and oxidizing the reactant with the oxygen at a suitable reaction temperature and a suitable reaction pressure to produce an oxidized product. The liquid reaction mixture can have an aromatic feedstock having an oxidizable substituent as the oxidizable reactant. The oxidized product can include an aromatic compound having at least one carboxylic acid. For example, the aromatic feedstock can include a benzene ring having at least one oxidizable alkyl substituent, furan hetero-ring having at least one oxidizable alkyl substituent, a naphthalene poly-ring having at least one oxidizable alkyl substituent, derivatives thereof, and mixtures thereof.
Abstract:
A method for increasing ozone concentration in a liquid can include: providing a gas having ozone; introducing the ozone-containing gas into a liquid, wherein the liquid and ozone combination has a temperature between about 0.8 and about 1.5 times the critical temperature of ozone; and increasing isothermally, the pressure of the ozone-containing gas above the liquid to about 0.3 to about 5 times the critical pressure of ozone so as to increase the ozone concentration in the liquid. The temperature is expressed in absolute units (Kelvin or Rankin). The method can be used for removing ozone from a gas or for purifying ozone. The liquid having a high ozone concentration can be used for ozonolysis of a substrate.