Abstract:
Processes for controlling the rate and temperature of cooling fluid through a heat exchange zone in, for example, an alkylation reactor using an ionic liquid catalyst. A cooling fluid system may be used to provide the cooling fluid which includes a chiller and a reservoir. The cooling fluid may pass from the reservoir through the heat exchange zone. A bypass line may be used to pass a portion of the cooling fluid around the heat exchange zone. The amount of cooling fluid may be adjusted, with a valve, based upon the temperature of the cooled process fluid flowing out of the heat exchange zone. Some of the cooling fluid from the chiller may be circulated back to the chiller in a chiller loop.
Abstract:
A dual utilization liquid and gaseous fuel CPOX reformer that includes reaction zones for the CPOX reforming of liquid and gaseous reformable fuels. A reforming method is also provided. The method comprises reforming a first gaseous reformable reaction mixture comprising oxygen-containing gas and vaporized liquid fuel and before or after this step, reforming second gaseous reformable reaction mixture comprising oxygen~containing gas and gaseous fuel to produce a hydrogen-rich reformate.
Abstract:
A reactor device includes a reaction chamber; one or more thermal units in thermal communication with the reaction chamber configured to transfer thermal energy to the reaction chamber; and a refractory layer between the reaction chamber and the one or more thermal units.
Abstract:
A multi-tubular chemical reactor includes an igniter for the initiation of gas phase exothermic reaction within the gas phase reaction zones of the tubular reactor units.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zum Abbau von synthetischen Polymeren, insbesondere Polyolefinen, umfassend die Schritte a) Schmelzen der synthetischen Polymere, insbesondere von trockenen synthetischen Polymere, in mindestens einem Extruder (E), b) Reinigen der Polymerschmelze mittels Durchleiten der Polymerschmelze durch mindestens einen Schmelzefilter (SF), c) Überführen der gereinigten Polymerschmelze in mindestens einen ersten Reaktor (R1), wobei die gereinigte Polymerschmelze in dem mindestens einen ersten Reaktor (R1) von einem unteren Bereich in einen oberen Bereich des Reaktors (R1) unter Erhitzen auf Temperaturen zwischen 300 und 370° C, bevorzugt 330° C bis 360° C, insbesondere bevorzugt 350° C geführt wird, wobei die Polymere in dem mindestens einem ersten Reaktor (R1) in Oligomere gespalten werden, d) Überführen der in dem mindestens eine ersten Reaktor (R1) gebildeten Oligomermischung in mindestens einen zweiten Reaktor (R2), wobei das Oligomergemisch in dem mindestens zweiten Reaktor (R2) von einem unteren Bereich in einem oberen Bereich des Reaktors (R2) unter Erhitzen bis auf 380 bis 450° C, bevorzugt 400° C bis 430° C, insbesondere bevorzugt 410° C geführt wird, wobei die Oligomere in dem mindestens einem zweiten Reaktor (R2) in Gegenwart von mindestens einem Tonmineral als Depolymerisationskatalysator in kurzkettige Kohlenwasserstoffe abgebaut werden, e) Abführen der in dem mindestens einen zweiten Reaktor (R2) gebildeten kurzkettigen Kohlenwasserstoffen in mindestens einen Vorkondensator (VK), wobei die aus dem mindestens einen zweiten Reaktor (R2) austretenden kurzkettigen Kohlenwasserstoffe in dem mindestens einen Vorkondensator (VK) abgekühlt werden; und f) Einführen der in dem mindestens einem Vorkondensator (VK) abgekühlten kurzkettigen Kohlenwasserstoffe in mindestens einen Hauptkondensator (HK), wobei die aus dem mindestens einem Vorkondensator (VK) austretenden kurzkettigen Kohlenwasserstoffe in dem mindestens einen Hauptkondensator (HK) verflüssigt werden. Die vorliegende Erfindung betrifft ebenfalls eine Anlage zur Durchführung dieses Verfahrens und das mit dem Verfahren hergestellte Produktöl.
Abstract:
Methods of making fuel are described herein. A method may include providing a first working fluid, a second working fluid, and a third working fluid. The method may also include exposing the first working fluid to a first high voltage electric field to produce a first plasma, exposing the second working fluid to a second high voltage electric field to produce a second plasma, and exposing the third working fluid to a third high voltage electric field to produce a third plasma. The method may also include providing and contacting a carbon-based feedstock with the third plasma, the second plasma, and the first plasma within a processing chamber to form a mixture, cooling the mixture using a heat exchange device to form a cooled mixture, and contacting the cooled mixture with a catalyst to form a fuel.
Abstract:
The present invention provides a novel continuous polymerization apparatus which is able to efficiently produce a polymer composition suitable for obtaining a resin composition with high quality. In a continuous polymerization apparatus, at least, a first reactor of a complete mixing type and a second reactor of a complete mixing type (10, 20) are used. Each of the reactors (10, 20) is provided with a supply port (11a, 21a), an effluent port (11b, 21b), and a temperature detecting means (T) for detecting a temperature in the reactor, wherein the supply port (11a) of the first reactor (10) is connected to the supply sources (1, 3) of a raw material monomer and a polymerization initiator, and the effluent port (11b) of the first reactor is connected through a connection line (15) to the supply port (21a) of the second reactor (20). The connection line (15) is combined with a secondary line (15') for supplying a raw material monomer at a combining part (M) located between the effluent port (11b) of the first reactor (10) and the supply port (21a) of the second reactor (20).
Abstract:
A control system (35) for a chemical reactor (10) in which an exothermic reaction takes place, includes a sensor (38, 39) arranged to monitor a parameter indicative of temperature within the chemical reactor (10), a rate-of-change calculator (56) to determine the rate of change of temperature with time, and at least one rate-monitoring means (60, 62) to monitor the observed rate of change of temperature. The monitoring means (60, 62) provides an output signal (64, 66, 68) in response to the observed rate of change. This output signal (64, 66, 68) is used in providing a signal to actuate a flow control means (33), to control the flow rate of reactants to the reactor (10).
Abstract:
An apparatus comprising a device suitable for retention in a nasal passage of a ruminant, the device is arranged to pass a ruminant exhalation. The device includes a first structure configured to oxidize methane gas in the ruminant exhalation and to pass products of the oxidized methane gas toward a nasal passage exit.