Abstract:
A vacuum pump generally comprises a low pressure portion and a high pressure portion separated by a gas impermeable partition. Gas molecules exit the low pressure portion through an opening in the partition and passively impinge on a featureless rotatable surface in the high pressure portion. A drive rotates the rotatable surface with tangential velocity in the supersonic range at multiple times the most probable velocity of the impinging gas molecules. Impinging gas molecules are ejected outwardly from the periphery of the rotatable surface generating a substantial net outward flow of gas and reducing the pressure in the low pressure portion. The vacuum pump is effective to reduce the pressure in the low pressure portion to a target minimum pressure without using seals to prevent gas molecules from leaking back to the low pressure portion and without using blades or vanes to actively impact the gas molecules.
Abstract:
A compact capacitively coupled electrode structure for use in a gas plasma reactor/generator is disclosed. The electrode structure comprises a parallel plate type anode and cathode spaced to define a gas flow path or volume therebetween. A plurality of electrically conductive fin elements are interposed in the space between the anode and cathode. The fin elements substantially increase the ratio of electrode surface area to volume, and subdivide the gas flow path or volume, thereby substantially increasing the efficiency of plasma gas processing that is possible over a broad range of operating parameters, without substantially increasing the spacing between the anode and cathode. Static or closed operation is also disclosed. Also disclosed is a multi-anode/multi-cathode electrode assembly embodying the basic electrode structure and a highly efficient and compact gas plasma reactor/generator employing the assembly.