摘要:
Embodiments described herein generally relate to a substrate support assembly having a shield cover. In one embodiment, a substrate support assembly is disclosed herein. The substrate support assembly includes a support plate, a plurality of RF return straps, at least one shield cover, and a stem. The support plate is configured to support a substrate. The plurality of RF return straps are coupled to a bottom surface of the support plate. At least one shield cover is coupled to the bottom surface of the support plate, between the plurality of RF return straps and the bottom surface. The stem is coupled to the support plate.
摘要:
Plasma source assemblies comprising a housing with an RF hot electrode having a body and a plurality of source electrodes extending vertically from the RF hot electrode toward the opening in a front face of the housing are described. Processing chambers incorporating the plasma source assemblies and methods of using the plasma source assemblies are also described.
摘要:
The disclosure concerns a method of operating a plasma reactor having an electron beam plasma source for independently adjusting electron beam energy, plasma ion energy and radical population. The disclosure further concerns an electron beam source for a plasma reactor having an RF-driven electrode for producing the electron beam.
摘要:
Embodiments of the present disclosure generally relate to an apparatus and method for reducing particle generation in a processing chamber. In one embodiment, the methods generally includes generating a plasma between a powered top electrode and a grounded bottom electrode, wherein the top electrode is parallel to the bottom electrode, and applying a constant zero DC bias voltage to the powered top electrode during a film deposition process to minimize the electrical potential difference between the powered top electrode and the plasma and/or the electrical potential difference between the grounded bottom electrode and the plasma. Minimizing the electrical potential difference between the plasma and the electrodes reduces particle generation because the acceleration of the ions in the sheath region of the electrodes is reduced and the collision force of the ions with the protective coating layer on the electrodes is minimized. Therefore, particle generation on the substrate surface is reduced.
摘要:
An apparatus may include a substrate support portion, a plasma generation chamber, electrodes, and a power source. The substrate support portion supports a substrate including an insulating layer and a substrate bulk. The plasma generation chamber may include chamber wall portions, a gas port, and a plasma application aperture and is configured to contain a gas. The plasma application aperture may be covered by a portion of the substrate. Each electrode may protrude into or extend into an interior portion of the plasma generation chamber. The power source may be coupled to a particular electrode, and the power source may be configured to apply a voltage to the particular electrode. Application of the voltage to the particular electrode generates a plasma within the plasma generation chamber, whereby generation of the plasma results in a conductive path through the insulating layer of the substrate between the plasma and the substrate bulk.
摘要:
Systems and methods for high pressure plasma discharge, wherein a system comprises at least one electrode which is fragmented into pieces and arranged to form a fragmented electrode system; at least one dielectric material placed between or parallel to the at least one electrode and another second electrode or fragmented pieces of the fragmented electrode systems, wherein the at least one electrode or fragmented pieces of the fragmented electrode system may have same or opposite charge; and at least one power supply unit; wherein the pieces of the electrode which is fragmented can be arranged parallel or divergent or convergent to one another and are at an angle to each other or the central axis passing through the electrode.