Abstract:
A RADAR apparatus may be used in target detection and/or avoidance. The RADAR apparatus may include a microwave front end configured to transmit and receive RF signals, an analog signal conditioning module coupled with the microwave front end module that conditions RF signals received at the microwave front end module, and a digital signal processing module coupled with the analog signal conditioning module that detects presence and range of one or more targets based on the filtered RF signals.
Abstract:
Systems and methods are disclosed to simulate a Hall probe, provide EPR coil driver, and/or perform a time-domain full scan sinusoidal deconvolution of EPR signals. The simulated Hall probe can return a Hall Effect voltage from a coil current that creates a magnetic field within a coil magnet and the reference current that would be fed to an actual Hall probe. From these values, the Hall Effective voltage can be determined which can be used to determine the magnetic field flux, which can then be used to regulate the magnetic field. Embodiments of the invention also disclose a coil driver and a new technique for EPR deconvolution.
Abstract:
Embodiments of the invention are directed toward a crossed-loop electron paramagnetic resonance resonator comprising a first resonator having a first resonator axis; and a second resonator having a second resonator axis. The first resonator axis and the second resonator axis can be substantially perpendicular. Either or both the first resonator and the second resonator can be a ribbon resonator having a plurality of metallic ribbons formed in a loop. Each metallic ribbon can include a central axis. The plurality of metallic ribbons can be arranged parallel relative one to another.
Abstract:
A docking system for an unmanned aerial vehicle (UAV) is described that provides a stable landing and take-off area as well as, in some embodiments, refueling and/or data transfer capabilities. The docking system may be portable to provide a ready docking area for a UAV in areas that may not otherwise be suitable for UAV operation. The docking system may include a landing surface, an orientation mechanism that adjusts the landing surface to provide a level landing area, and an alignment mechanism coupled with the landing surface that moves a UAV resting on the landing surface to a predetermined location on the landing surface for automated refueling of the UAV. A latching mechanism may secure the UAV to the landing surface when the UAV is located at the predetermined location.
Abstract:
This invention is a temperature-based smart insole capable of continuously or intermittently measuring the foot temperature of the patient at one or more locations of the foot while the insole is worn. The device provides feedback to the patient alerting the individual of risk based on his/her plantar temperatures. Benefits of this device include: its ability to free the patient from the clinical setting and increase patient's confidence to be mobile, thus enhancing circulation while at the same time allowing the patient to self-monitor their feet.
Abstract:
Provided is a system for monitoring gait. More particularly, the system comprises: one or more pressure sensors; an algorithm which compares the data from the pressure sensor(s) to a stability profile, and provides a feedback value; means for communicating the feedback value; and a power source. Also provided is a method for gait analysis comprising: collecting signals from one or more pressure sensors located in pressure proximity to a foot, generating a test profile; comparing the test profile to a stability profile; generating a feedback signal; and communicating the feedback signal. The system may also comprise one or more accelerometers.
Abstract:
This invention provides a family of compounds that inhibit Class II fructose 1,6-bisphosphate aldolase (FBA), which is implicated in the pathogenic activity of a broad range of bacterial and parasitic agents. The compounds were identified by empirical testing, and provide a basis for further derivatization and optimization of 8-hydroxyquinoline-2-carboxylic acid and related compounds. Crystal structure shows that the compounds don't bind directly to the catalytic site of the enzyme, and so are not defined simply as substrate analogs. Instead, they create a pocket by induced fit, resulting a powerful and specific inhibitory effect on FBA activity.
Abstract:
Embodiments of the invention are directed toward a crossed-loop electron paramagnetic resonance resonator comprising a first resonator having a first resonator axis; and a second resonator having a second resonator axis. The first resonator axis and the second resonator axis can be substantially perpendicular. Either or both the first resonator and the second resonator can be a ribbon resonator having a plurality of metallic ribbons formed in a loop. Each metallic ribbon can include a central axis. The plurality of metallic ribbons can be arranged parallel relative one to another.
Abstract:
A method of screening a library comprising: (i) providing either (a) a library comprising more than one copy of different library members, each copy of a different library member attached to a different releasable tag through a releasable covalent bond; where a plurality of tags uniquely encode each library member; or (b) a library comprising one or more copies of a library member attached to a support, with a plurality of tags uniquely encoding each library member; or (c) a library comprising different library members, each different library member attached to a plurality of tags uniquely encoding the different library member; (ii) providing a target compound with tethered sensitizer in specific binding proximity to the library, allowing specific binding of the target compound with tethered sensitizer to a selected library member; (iii) exciting the tethered sensitizer with excitation photoradiation, whereby the releasable tags attached to the selected library member are released; and (iv) detecting the releasable tags.
Abstract:
Provided are inexpensive devices and methods for obtaining emission or scattering spectra of multiple particles simultaneously and for characterizing the particles based on their emission or scattering spectra. The disclosed devices and methods are useful for analyzing multiple particles to determine one or more characteristics of the particles, such as size, type, elastic scattering, fluorescence and/or Raman characteristics, for distinguishing between biological and non-biological particles, and for biomedical assaying applications. Laboratory or research grade spectroscopic devices are described. Smartphone-based spectroscopic devices are also described, where various components of a smartphone are used for data collection and analysis purposes.