Abstract:
본 발명의 일 실시예는 자기공명영상 시스템용 RF(radio frequency) 코일에 있어서, 상기 RF 코일은 방사형으로 배치된 복수의 루프를 포함하고, 상기 복수의 루프 각각은 상기 방사형 구조의 중심부에서 적어도 일부 영역(area)이 겹쳐지는 자기공명영상용 RF 코일을 개시한다.
Abstract:
Methods for assessing a health condition of an individual using single coil magnetic induction tomography imaging are provided. A target area for medical imaging on a patient can be identified. A plurality of coil property measurements can be obtained using a single coii. The plurality of coil property measurements can be performed with the single coil at a plurality of discrete locations relative to the target area. The coil property measurements can be processed to generate an image of the conductivity distribution of the target area. The image can be analyzed to assess a health condition of the patient.
Abstract:
The present invention is related to a method of acquiring free-breathing steady-state magnetic resonance images (MRI) and a free-breathing Magnetic Resonance (MR) imaging system (10) for generating a MR image of a test subject (20) at least comprising a magnetic field unit, a control unit for controlling functions of the MR imaging system, an image processing unit and a user interface capable of receiving parameters defining a MR-pulse sequence, wherein the MR imaging system further comprises a detection unit (36) for detecting physiological activity of a test subject and a data processing unit (40) capable of performing statistical analysis of the physiological activity data and capable to adaptively tailor at least one of the parameters of the MR-pulse sequence based on the statistical analysis. This includes at least adjustment of at least the starting points and/or the duration of RF-dummy excitations which are part of the MR-pulse sequence.
Abstract:
A medical system (10)and method(100)image a vessel wall automatically. A scout scan of a patient for localizing a target vessel of the patient is automatically performed (102) using magnetic resonance (MR). The scout scan is three-dimensional (3D) and isotropic. An MR data set of the scout scan is automatically reconstructed (104) into foot-to- head (FH), left-to-right (LR) and posterior-to-anterior (PA) projections. A3D imaging volume (16)encompassing the target vessel is automatically determined (106) from the projections, and a diagnostic scan of the 3D imaging volume (16) is performed (108) using MR.
Abstract:
The present invention provides a phantom (200) for use in a magnetic resonance (MR) imaging system (110) with a set of resonating volumes (206) positioned in a base body (202), whereby the base body (202) has a spherical or ellipsoid shape in accordance with a volume of interest (203) of the MR imaging system (110), and the resonating volumes (206) are located at a circumference of the base body (202). The phantom is used in a method for evaluating the magnetic field of a main magnet (114) of a magnetic resonance (MR) imaging system (110), comprising the steps of positioning the phantom (200) within the main magnet (114), performing a 3D spectroscopic MR measurement of the phantom (200) using the MR imaging system (110), thereby measuring resonances of the resonating volumes (206), assigning the measured resonances to the resonating volumes (206), and evaluating the magnetic field of the main magnet (114) from the MR measurement of the phantom (200) based on the measured resonances of the resonating volumes (206). Accordingly, the MR imaging system itself is directly used for determining the magnetic field of its main magnet. Accordingly, the MR imaging system itself can be used as measurement equipment, instead of a separate NMR magnetometer, which is required for conventional determination of the magnetic field.
Abstract:
Die Erfindung beruht auf der Idee bei einem Tomographiegerät, umfassend eine Gantry (2) sowie ein Leuchtmittel (4), ausgelegt zur Beleuchtung eines in die Öffnung der Gantry (2) hineinragenden Untersuchungsbereiches, das Leuchtmittel (4) derart in die Gantry (2) zu integrieren, dass die Oberfläche der Gantry einen glatten Übergang zum Lichtaustrittsfenster des Leuchtmittels (4) aufweist. Durch das erfindungsgemäß integrierte Leuchtmittel (4) werden die Bedingungen einer Behandlung des Untersuchungsbereiches bei einer gleichzeitigen tomographischen Bildaufnahme verbessert, und zwar dahingehend, dass der behandelnden Person ein großer Bewegungsspielraum bei gleichzeitiger Beleuchtung des Untersuchungsbereiches eines Patienten gewährleistet wird. Denn durch den glatten Übergang der Oberfläche der Gantry (2) zu dem Lichtaustrittsfenster des Leuchtmittels (4) trägt das Leuchtmittel (4) nicht auf, so dass die Gefahr einer Kollision zwischen einer behandelnden Person und/oder einem medizinischen Instrument und dem Leuchtmittel (4) verringert wird.
Abstract:
Embodiments of the invention are directed toward a crossed-loop electron paramagnetic resonance resonator comprising a first resonator having a first resonator axis; and a second resonator having a second resonator axis. The first resonator axis and the second resonator axis can be substantially perpendicular. Either or both the first resonator and the second resonator can be a ribbon resonator having a plurality of metallic ribbons formed in a loop. Each metallic ribbon can include a central axis. The plurality of metallic ribbons can be arranged parallel relative one to another.
Abstract:
A method for highly accelerated projection imaging ("ΗΑΡI") is provided. In this method, conventional linear gradients are used to obtain coil sensitivity-weighted projections of the object being imaged. Only a relatively small number of projections, such as sixteen or less, of the object are required to reconstruct a two-dimensional image of the object, unlike conventional projection imaging techniques. The relationship between the voxel values of the imaged object and the coil sensitivity- weighted projections is formulated as a linear system of equations and the reconstructed images are obtained by solving this matrix equation. This method advantageously allows higher acceleration rates compared to echo planar imaging ("ΕΡI") with SENSE or GRAPPA acceleration. Moreover, the method does not require any additional or specialized hardware because hardware in conventional MRI scanners is adequate to implement the method.
Abstract:
La présente invention a pour objet un procédé de réalisation d'un module de pilotage compact d'une antenne haute fréquence pour appareil d'imagerie par résonance magnétique comportant M éléments de pilotage et N éléments rayonnants, ledit module de pilotage étant représenté par une matrice de pilotage P, P étant une matrice approchée d'une matrice de pilotage P permettant de piloter les N éléments rayonnants à partir des M éléments de pilotage; ledit procédé comportant : une étape de décomposition de la matrice de pilotage P en deux matrices H x L; la première matrice L , de dimension MxM , étant apte à transformer en amplitude et en phase une pluralité de M signaux Vm émis par ladite pluralité M d'éléments de pilotage en M signaux V,; la deuxième matrice H de dimension NxM recevant en entrées lesdits M signaux V,; une étape de fabrication de ladite matrice H avec un nombre d'étage inférieur au nombre d'étage nécessaire à l'implémentation de la matrice de pilotage P, lesdits étages étant implémentés par des moyens de couplage (17), des moyens de déphasage (18) et des moyens de permutations (19); une étape de mise en œuvre de ladite matrice L par des moyens logiciels à partir de l'implémentation de ladite matrice H déterminée lors de l'étape précédente.