Abstract:
This invention relates to an ACDC converter (1) comprising a converter input (3) and a converter output (5), a pre-regulation stage (7) and a DC transformer stage (9) comprising a transformer input stage (11) and a transformer output stage (13). The transformer input stage comprises a double ended converter and there is further provided a controller (17) for providing a control signal to the double ended converter. The controller (17) operates the ACDC converter using burst mode control and by sending control signals comprising pulse sets that are designed to provide substantially zero net magnetising current in the double ended converter. The pre-regulation stage preferably comprises a buck converter which in turn also provides power factor correction to the input of the ACDC converter.
Abstract:
A heavy duty cycle power converter (2) has current mode control in which the closed loop control is carried out by a controller (5) using a desired signal (11) which is a function of the difference between the desired duty cycle (7) and the measured duty cycle (6) This fluctuates current mode control without voltage feedback.
Abstract:
This invention relates to a power converter (1 ) comprising a converter input (3), a converter output, a power factor pre-regulation stage (5), an isolation stage (7) and a control unit (9). The power factor pre-regulation stage (5) further comprises a buck power factor correction (PFC) circuit (15) and a bulk capacitor (25) fed by the buck PFC circuit. The amount of line current provided to the bulk capacitor (25) by the buck PFC circuit (15) may be adjusted according to the converter requirements in order to keep the voltage across the bulk capacitor (25) sufficient to ensure uniform operation of the power converter. Monitoring of the voltage across the bulk capacitor (25) and monitoring of the isolation stage (7) output current is provided to determine when additional current is to be applied to the bulk capacitor (25) and to ensure the power converter (1 ) operates within pre-defined parameters.
Abstract:
The present invention relates to an AC/DC converter (1) of the type having an AC/DC conversion stage (2) and a DC/DC conversion stage (3), the AC/DC conversion stage (2) comprising an input filter stage (4), an input rectifier stage (5) and a tracking boost converter stage. The boost converter stage in turn comprises an input choke (10), a boost diode (16) and a bulk capacitor (17). The bulk capacitor (17) is arranged to store a range of voltages substantially proportional to the input voltage of the converter. The DC/DC stage (3) is arranged to receive the range of voltages from the bulk capacitor (17) and is controllable to provide a desired DC output regardless of the voltage received from the bulk capacitor (17). This is achieved through careful combination of components and use of output feedback control to control the voltage applied to an isolated transformer (41) in the DC/DC stage.
Abstract:
This invention relates to a transformer (1) for multi-output power supplies such as those commonly found in electronic equipment. The transformer comprises a magnetic core (3) and a plurality of windings (5, 7, 9) at least some of which are fractional windings, arranged about the magnetic core. The transformer comprises a dual transformer structure with a pair of transformers, a main transformer (11) and an auxiliary transformer (13). In a preferred embodiment, the main transformer and the auxiliary transformer are connected together. In this way, readily available magnetic components may be used in the construction of the transformer and the simple construction allows for a large cross-sectional area of transformer to be deployed so that reduced turn counts of windings may be used.
Abstract:
The invention relates to a power converter (1) comprising a magnetic core (3) and a plurality of sub-converters each having a primary winding (17. 19) and a secondary winding. The magnetic core (3) comprises an inner leg (7) and a plurality of outer legs (5, 9), each of the outer legs (5, 9) having a gap (11, 13) formed therein. The primary winding (17) of one sub-converter is wound around an outer leg and the primary winding (19) of another sub-converter is wound around another outer leg. The primary windings (17, 19) are formed from a unitary winding (21) which is wound around the legs (5, 7, 9) in a continuous fashion. The primary windings (17, 19) are mounted on a printed circuit board (PCB) (15) and interconnects between turns of the primary windings are achieved using vias (27, 29) at the ends (23, 25) of the unitary winding. The vias may be conveniently placed in the corner sections or the PCB (15).
Abstract:
This invention relates to a power converter for use in ACDC power supplies and in particular to a power converter comprising a converter input, a converter output and an output synchronous rectification stage, the output synchronous rectification stage comprises a plurality of switching devices, an output inductor and an output capacitor. According to the invention the output inductor is provided by way of a tapped inductor and there is provided an output reverse recovery device, connected to the tapped inductor to provide an alternative path for the flow of current in the freewheeling period of the output synchronous rectification stage. In this way, the functionality of the power converter, particularly at higher frequencies is enhanced.
Abstract:
This invention relates to a power converter (1 ) comprising a converter input (3), a converter output (5), a power factor correction (PFC) stage (7) and an isolation stage (9). The PFC stage (7) is implemented by way of a buck PFC with low side drive and low side current sensing, There is provided a third stage, an intermediate buck pre- regulation stage (11), intermediate the buck PFC stage (7) and the isolation stage (9), Control of the power converter output voltage is achieved by varying the duty cycle of the intermediate buck pre-regulation stage (11 ) and therefore the isolation stage (9) may be an unregulated stage operated as a fixed DCDC voltage converter. The isolation stage (9) is operated as a 50%-50% duly cycle double ended stage. The configuration of power converter allows for a relatively inexpensive, highly efficient converter with 90%+ efficiency and simplified control.
Abstract:
There is illustrated the assembly of a dual inductor (1) on to a printed circuit board (2). A printed circuit board (2) has a through hole (3). Then the first winding (5), formed from a stamping, is mounted across the hole (3). Then, the first winding (5) is connected to the first face (7) of the PCB (2). Then, a core assembly (10) is inserted into the, hole (3) from the direction of a second face (8) of the PCB (2). Then, at some stage, for example as shown, the second winding (6) is inserted into the core assembly (10) and affixed to the bottom face (8) of the PCB (2).