Abstract:
A valve assembly may include a main housing and first and second electro-statically actuated valves. The main housing may define at least three chambers, with a first chamber configured to be coupled to a high pressure supply port, a second chamber configured to be coupled to an output port, and a third chamber configured to be coupled to a low pressure exhaust port. The first electro-statically actuated valve may be provided between the first and second chambers, and the first electro-statically actuated valve may allow or substantially block fluid communication between the first chamber and the second chamber responsive to a first electrical signal. The second electro-statically actuated valve may be provided between the second and third chambers, and the second electro-statically actuated valve may allow or substantially block fluid communication between the second chamber and the third chamber responsive to a second electrical signal. Related methods are also discussed.
Abstract:
An electrostatic actuator having a base (10) including a first electrode (20), and having a flexible membrane (50) including at least two material layers of different materials in contact with each other. At least one of the material layers includes a second electrode (40) electrically isolated from the first electrode. The flexible membrane includes a fixed end where the flexible membrane connects to the base and a free end opposite the fixed end. In the flexible membrane, the second electrode has at least first and second portions separated by a third portion an in combination defining a step provided in a vicinity of the fixed end. The first step is closest to the fixed end and separated by a shorter distance from the first electrode than the second portion. A stiffening member (310) can be disposed on the flexible membrane toward the free end of the flexible membrane. The electrostatic actuator can include an elongated orifice (420,320) extending through the base and extending along a direction away from the fixed end. The first electrode of the base can extends past an end of the second electrode of the flexible membrane in a direction defined toward the fixed end. The flexible membrane can include a peripheral or side cut out configured to communicate to an interior of the flexible membrane.
Abstract:
A valve assembly may include a main housing and first and second electro-statically actuated valves. The main housing may define at least three chambers, with a first chamber configured to be coupled to a high pressure supply port, a second chamber configured to be coupled to an output port, and a third chamber configured to be coupled to a low pressure exhaust port. The first electro-statically actuated valve may be provided between the first and second chambers, and the first electro-statically actuated valve may allow or substantially block fluid communication between the first chamber and the second chamber responsive to a first electrical signal. The second electro-statically actuated valve may be provided between the second and third chambers, and the second electro-statically actuated valve may allow or substantially block fluid communication between the second chamber and the third chamber responsive to a second electrical signal. Related methods are also discussed.
Abstract:
An electrostatic actuator having a base including a first electrode, and having a flexible membrane including at least two material layers of different materials in contact with each other. At least one of the material layers includes a second electrode electrically isolated from the first electrode. The flexible membrane includes a fixed end where the flexible membrane connects to the base and a free end opposite the fixed end. In the flexible membrane, the second electrode has at least first and second portions separated by a third portion an in combination defining a step provided in a vicinity of the fixed end. The first step is closest to the fixed end and separated by a shorter distance from the first electrode than the second portion. As a part of the flexible membrane, a stiffening member can be disposed on the flexible membrane toward the free end of the flexible membrane. The electrostatic actuator can include an elongated orifice extending through the base and extending along a direction away from the fixed end. The first electrode of the base can extends past an end of the second electrode of the flexible membrane in a direction defined toward the fixed end. The flexible membrane can include a peripheral or side cut out configured to communicate to an interior of the flexible membrane. Laterally extending connectors can connect the base and the fixed end of the flexible membrane along a part of the base not otherwise connected to the flexible membrane.
Abstract:
The present invention provides for an improved electromagnetic radiation detector having a micromachined electrostatic chopper/shutter device. The MEMS flexible film chopper/shutter device provides reliability, efficiency, noise reduction and temperature fluctuation compensation capabilities to the associated electromagnetic radiation detector. An electromagnetic radiation detector having an electrostatic chopper/shutter device includes a detector material element and flexible film actuator overlying the detector material layer and moveable relative thereto. The flexible film actuator will typically include an electrode element and biasing element such that the actuator remains in a fully curled, open state absent electrostatic voltage and moves to a fully uncurled, closed state upon the application of electrostatic voltage. Arrays that incorporate a plurality of electromagnetic radiation detectors and/or electrostatic shuttering devices are additionally provided for.