Abstract:
Performing load balancing by a wireless transmit/receive unit, WTRU, includes the WTRU evaluating a current cell load value and, on a condition that the current cell load value is greater than a predetermined threshold, performing load balancing by barring the current cell. The current cell load value may be a number of consecutive failed RACH access attempts. Other embodiments teach a method to identify a machine type communication, MTC, device, a method to restrict access to a group of MTC devices, a method to restrict access to a particular MTC device, a method to control congestion, and a method for MTC device prioritization.
Abstract:
Method and apparatus having a beamforming antenna generates a plurality of directional antenna beams. A discovery beacon is generated for use in associating with a wireless transmit/receive unit (WTRU). The discovery beacon is transmitted to a plurality of sectors using coarsely focused directional antenna beams. A WTRU may receive one of the coarsely focused directional antenna beams, and may then transmit a response message. Finely focused directional antenna beams are establishing for packet data transmission. A periodic beacon may then be transmitted to the WTRU using one of the coarsely focused directional antenna beams.
Abstract:
A method and apparatus of performing discontinuous reception (DRX) and downlink inter-frequency and inter-radio access technology (RAT) measurements in CELL_FACH state are disclosed. While in DRX mode, a wireless transmit/receive unit (WTRU) may perform inter-frequency and inter-RAT measurements in a measurement occasion that fall into a DRX period. The WTRU may perform the measurements while T321 timer is running. The WTRU may take the measurements on first predetermined number of frame in which a DRX frame would coincide after a last reception frame if DRX operation was ongoing. The WTRU may periodically wake up for downlink reception in CELL_FACH state in accordance with a common DRX pattern that is common to all WTRUs in a cell or may wake up from DRX upon reception of the order and receiving a common traffic.
Abstract:
A method and an apparatus is provided for terminating an enhanced random access channel (E-RACH) message in an E-RACH transmission. Triggers for terminating the E-RACH message are provided. The actions upon termination of the E-RACH messages are provided to release enhanced dedicated channel (E-DCH) resources while in cell forward access channel (CELL_FACH) state or transition to cell dedicated channel (CELL_DCH) state.
Abstract:
A wireless transmit receive unit (WTRU) is disclosed that is configured to perform cell reselection to another cell when the WTRU is in a CELL_FACH state using an Enhanced-Dedicated Channel (E-DCH). The cell reselection is based on internal measurements by the WTRU. Alternatively, the cell reselection can be WTRU based on the WTRU measurements reported to the network.
Abstract:
A method for discontinuous reception (DRX) implemented in a wireless transmit/receive unit (WTRU) during cell reselection including transmitting a CELL UPDATE message; disabling DRX operation upon transmission of the CELL UPDATE message, wherein disabling DRX operation enables continuous reception; receiving a CELL UPDATE CONFIRM message; and enabling DRX operation based on the received CELL UPDATE CONFIRM message.
Abstract:
A method and wireless transmit receive unit (WTRU) are disclosed that is configured to perform cell reselection to another cell when the WTRU is in a CELL_FACH state using an Enhanced-Dedicated Channel (E-DCH). The cell reselection is based on internal measurements by the WTRU. Alternatively, the cell reselection can be WTRU based on the WTRU measurements reported to the network.
Abstract:
A method and apparatus for performing an enhanced random access procedure in a Cell_FACH state are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble for random access. If a positive acknowledgement (ACK) is received in response to the RACH preamble, the WTRU enters a contention resolution phase and transmits a message via an enhanced dedicated channel (E-DCH). If contention resolution fails, the RACH preamble is retransmitted. A contention back-off timer may be used for retransmission. A physical random access channel (PRACH) code may be reselected. The RACH preamble may be retransmitted using a reserved PRACH resource so that E-DCH resource is allocated to the collided WTRUs. Data transmitted during the contention resolution phase may remain in a hybrid automatic repeat request (HARQ) buffer. The MAC-i/is entity may be reset. All data sent during the contention resolution phase may be stored in a temporary buffer.
Abstract:
A method and apparatus for control of uplink feedback information in contention based wireless communications is disclosed. Uplink feedback information such as a channel quality information and hybrid automatic retransmission request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) information may be transmitted to the universal terrestrial radio access network (UTRAN) by a wireless transmit/receive unit (WTRU) based on explicit and implicit triggers. Providing more frequent and robust information relating to the channel conditions and HARQ status allows the UTRAN to more efficiently utilize the radio resources for downlink data transmissions.
Abstract:
A method and apparatus for uplink transmission over a non-contentious shared feedback channel are disclosed, wherein the parameters of the uplink transmission are determined by the parameters of a downlink transmission. A new uplink channel, called a physical shared uplink feedback channel (PSUFCH) is used for uplink transmission such as feedback information in response to a downlink transmission on a fast shared data channel. The content of the feedback information may be general, e.g. an ACK/NACK or a channel quality indicator (CQI). The PSUFCH is transmitted using power ramping that terminates upon reception of a downlink ACK (DLACK) from a Node-B. No ambiguity resolution is required due to the non-contentious and deterministic mapping of the uplink channel resources.