Abstract:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
Abstract:
Described herein is a silent period method and apparatus for dynamic spectrum management. The methods include configuration and coordination of silent periods across an aggregated channel in a wireless communication system. A silent period management entity (SPME) dynamically determines silent period schedules for channels based on system and device information and assigns a silent period duration and periodicity for each silent period. The SPME may reconfigure the silent period schedule based on system delay, system throughput, channel quality or channel management events. A silent period interpretation entity (SPIE) receives and implements the silent period schedule. The silent periods for the channels may be synchronized, independent, or set-synchronized. Interfaces for communicating between the SPME, SPIE, a channel management function, a medium access control (MAC) quality of service (QoS) entity, a sensing/capabilities database, a MAC layer management entity (MLME) and a wireless receive/transmit unit (WTRU) MLME are described herein.
Abstract:
Providing application layer support for one or more sleeping nodes in constrained networks. Inserting sleep information in a header option or payload of an application layer message. The application layer message may be conveyed in a hypertext transfer protocol (HTTP) or a constrained application protocol (CoAP). Embodiments contemplate communicating the application layer message to a server, which may serve as a caching and/or buffering proxy.
Abstract:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto acces point and a BWM server, a BWM server may need deep packet inspection capabilities.
Abstract:
Method and apparatus for random access in multicarrier wireless communications are disclosed. Methods and apparatus are provided for physical random access channel (PRACH) resource signaling, PRACH resource handling, preamble and PRACH resource selection, random access response (RAR) reception, preamble retransmission, and transmission and reception of subsequent messages. A method for maintaining an allowed multicarrier uplink (UL) random access channel (RACH) configuration set by adding an UL carrier to the allowed RACH configuration set provided that a triggering event occurs and performing a random access (RA) procedure using the allowed RACH configuration set. A method for sending data in multicarrier wireless communications by determining a set of available UL carriers and selecting an UL carrier from the set of available UL carriers.
Abstract:
A method and apparatus for processing advanced long term evolution (LTE-A) system information (SI) are described. When a wireless transmit/receive unit (WTRU) is in an idle mode/state, an LTE-A SI broadcast may be received on at least one downlink (DL) anchor carrier, including a physical DL shared channel (PDSCH) having paging message content. At least one SI-change parameter included in the paging message content may be decoded and processed. The SI-change parameter may include a flag used to indicate an SI change on a logical partition, (a primary or a secondary SI broadcast group information change). When the WTRU is in a connected mode/state, an LTE-A SI-CHANGE-radio network temporary identifier (RNTI) transmission may be received during a modification period (MP), and an SI change may be performed during a subsequent MP. At least one SI-change parameter included in the SI-CHANGE-RNTI transmission may be decoded and processed.
Abstract:
A method and apparatus are described for using an uplink (UL) primary carrier for long term evolution-advanced (LTE-A) to support hybrid automatic repeat request (HARQ) feedback, a channel quality indicator (CQI), a scheduling request (SR), power headroom, and at least one buffer status report in the context of asymmetrical deployment and symmetrical deployment.
Abstract:
Performing load balancing by a wireless transmit/receive unit, WTRU, includes the WTRU evaluating a current cell load value and, on a condition that the current cell load value is greater than a predetermined threshold, performing load balancing by barring the current cell. The current cell load value may be a number of consecutive failed RACH access attempts. Other embodiments teach a method to identify a machine type communication, MTC, device, a method to restrict access to a group of MTC devices, a method to restrict access to a particular MTC device, a method to control congestion, and a method for MTC device prioritization.
Abstract:
Method and apparatus having a beamforming antenna generates a plurality of directional antenna beams. A discovery beacon is generated for use in associating with a wireless transmit/receive unit (WTRU). The discovery beacon is transmitted to a plurality of sectors using coarsely focused directional antenna beams. A WTRU may receive one of the coarsely focused directional antenna beams, and may then transmit a response message. Finely focused directional antenna beams are establishing for packet data transmission. A periodic beacon may then be transmitted to the WTRU using one of the coarsely focused directional antenna beams.
Abstract:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto acces point and a BWM server, a BWM server may need deep packet inspection capabilities.