Abstract:
Embodiments disclosed herein provide hydrocarbon and methods of using the same. The additives are suitable for use in conjunction with gasifiers, furnaces, or other high-temperature vessels. The additives may be part of an input stream to a reaction vessel of a hydrocarbon gasifier. The additives include a ferric oxide, a magnesium oxide, a manganese oxide, or a combination thereof, that at least partially reduce the infiltration of slag into the refractory material.
Abstract:
A method for assembling a nozzle is provided. The method includes providing an injection tube that includes an outlet that is configured to discharge fuel therefrom. A face plate is also provided that extends about the injection tube such that the face plate substantially circumscribes the outlet. A cooling chamber is defined within the injection tube and configured to channel cooling fluid adjacent to the face plate. At least one surface defining the cooling chamber is configured to disrupt a flow of the cooling fluid flowing through the cooling chamber.
Abstract:
A method for fabricating a ceramic composite includes forming a first ceramic composite layer (CCL), positioning a form against the first CCL, positioning a second CCL against the form such that the form is at least partially circumscribed by the first CCL and the second CCL. The method also includes coupling the first CCL to the second CCL, such that at least a first passage extends in a first direction across at least a portion of the ceramic composite component and is defined at least partially by the first CCL and the second CCL in a location vacated by the first form.
Abstract:
A fuel injector (208) for injecting fuel into a gasifier includes a mating end (302) including a nozzle portion (70) and a first flange (316) fixedly coupled to the mating end and having a first receiving hole there through and including a first diaphragm disposed therein. The injector also includes a fuel transmission nozzle displaced at least partially within the mating end and passing through the first receiving hole arranged and configured such that a jsecondary oxygen channel exists between the fuel transmission nozzle and the mating end, the fuel transmission nozzle being fixedly coupled to the first diaphragm and further including a fuel inlet (314) for receiving fuel for introduction into the gasifier.
Abstract:
A feed injector for providing feed to a gasifier of an integrated gasification combined cycle system includes: a base leading to a body and terminating in a tip, the tip including an exitway for injecting feed into the gasifier; the tip including a mating of an inner shell disposed within a core insert, with an outer shell in which the core insert is disposed; a plurality of spacers disposed between the core insert and inner shell thus providing an inner annular space, and another plurality of spacers disposed between the core insert and outer shell thus providing an outer annular space; the inner annular space and the outer annular space being in fluid communication at the tip and providing for a flow of coolant from the base to the tip and back to the base. A method of fabrication and an integrated gasification combined cycle power plant are also disclosed.
Abstract:
A method for assembling a nozzle is provided. The method includes providing an injection tube that includes an outlet that is configured to discharge fuel therefrom. A face plate is also provided that extends about the injection tube such that the face plate substantially circumscribes the outlet. A cooling chamber is defined within the injection tube and configured to channel cooling fluid adjacent to the face plate. At least one surface defining the cooling chamber is configured to disrupt a flow of the cooling fluid flowing through the cooling chamber.