Abstract:
An ultrasonic welding method for joining a first thermoplastic part and a second thermoplastic part without causing visible read-through on an exposed surface of the second part. The method includes arranging the first part on an inner surface of the second part. The inner surface is opposite the exposed surface. The first part has an interface portion contacting the inner surface. The method includes causing a horn of an ultrasonic welding stack to be pressed against the first part by applying ultrasonic energy oscillating at a frequency in a range of 45-70 kHz through the horn, to thereby join the first part and the second part together. The horn has at least one protruding distal portion configured to penetrate through the first part as the ultrasonic energy is imparted through the horn. The distal portion has a length longer than a thickness of the first part. A collapse distance of a weld formed at the interface portion is less than the thickness of the first part, to avoid read-through effects on the exposed surface of the second part.
Abstract:
An infrared welding system for joining two parts (PI, P2) made of thermoplastic material comprises a pair of infrared heaters (11, 11) for heating the two parts (PI, P2) while spaced from each other; and energizing the infrared heaters (11, 11) to emit infrared heat and directing the emitted infrared heat onto selected portions (Pla, P2a) of the opposed surfaces of the parts (PI, P2) to melt at least portions of the opposed surfaces, while directing an inert gas onto the selected portions to prevent ignition of the melted thermoplastic material. The two parts (PI, P2) are clamped together by moving at least one of the parts toward the other part to press the melted surfaces of the parts (PI, P2) into contact with each other. The parts (PI, P2) are cooled while they remain clamped together to solidify the molten thermoplastic material and thus weld the two parts (PI, P2) together.
Abstract:
A laser welding system is directed to simultaneously joining respective layers of a first bag and a second bag. The system includes a first film layer (501) adjacent to a second film layer (502) for forming the first bag, and a third film layer (503) adjacent to a fourth film layer (504) for forming the second bag, each layer of the plurality of film layers (501, 502, 503, 504) being made of a thermoplastic material that absorbs laser radiation having a wavelength of about 2 microns. A non-absorbing carrier film layer (505) is positioned between the second film layer (502) and the third film layer (503), the non-absorbing carrier film layer (505) being made of a material that transmits substantially all energy of the laser radiation. A laser source applies the laser radiation toward portions of the plurality of film layers (501, 502, 503, 504) to be joined, forming the first bag generally simultaneously with the second bag. Another laser welding system is disclosed for joining first and second thermoplastic workpieces (110, 111), and including a first clamping structure (113) being composed of a material having a non-flat surface (119). A laser source applies laser radiation having a wavelength of 2 microns toward the workpieces (110, 111) to be joined, while they are clamped together, to melt irradiated portions of the workpieces (110, 111) to one another. The first clamping structure (113) transmits substantially all of the energy of the laser radiation through the material.
Abstract:
A laser welding method and system join portions of two workpieces (20, 21) of thermoplastic material by clamping together the portions of the workpieces (20, 21) to be joined, against a baseplate (23) engraved or etched to form an image to be replicated in the joined portions of the workpieces (20, 21), and applying laser radiation to the portions of the clamped workpieces (20, 21) to be joined, to melt those portions of the clamped workpieces (20, 21) to be joined and to replicate the image in the joined portions of the clamped workpieces (20, 21) when the material solidifies. The thermoplastic material of the workpieces (20, 21) can be optically transparent but absorbs a portion of the laser radiation, so that both workpieces (20, 21) are heated and melted by the laser radiation. A portion of the melted workpiece material flows into the engraved or etched portions of the baseplate (23), forming an embossed surface on the lower surface of the area where the workpieces (20, 21) are joined.
Abstract:
Device and method for laser welding around a circumference of a workpiece. A fixed, non-movable unitary optical reflector is provided, which has a pair of optical reflecting surface portions on a first side surface and a second side surface, respectively, arranged at an obtuse angle relative to each other. A workpiece is positioned and fixed in an assembly that includes the unitary optical reflector. During setup, the vertical distance is adjusted between the unitary optical reflector and the workpiece along an axis that is transverse to a longitudinal axis of the workpiece without any adjustment of the reflecting surfaces, which remain fixed during setup. The first and second side surfaces define a curve that is transverse to the longitudinal axis. Once setup has been completed, a laser beam is directed so that it moves along the optical reflector to thereby produce a 360 degree circumferential weld around the workpiece.
Abstract:
The present disclosure can provide for an ultrasonic welding method for a pair of workpieces (Wl, W2). The method can include first pressing an ultrasonic welding stack (10) against a first workpiece (Wl) in the pair so that the first workpiece (Wl) comes into contact with a second workpiece (W2) in the pair. The method can then provide for initiating a weld phase by outputting energy from the ultrasonic welding stack (10) to the first workpiece (Wl). The method can provide for monitoring, with at least one sensor, a sensed parameter. The sensed parameter can be weld force or weld force rate of change. The method can provide for determining whether the sensed parameter has reached a predetermined level. Based on determining that the sensed parameter has reached the predetermined level, the method can provide for ending the weld phase.
Abstract:
A method for optimizing a welding process to produce a weld joint having a predetermined strength includes measuring a plurality of melt layer thicknesses of weld joints for a plurality of sample assemblies formed by the welding process, measuring a plurality failure loads of weld joints for the plurality of sample assemblies, each of the measured plurality of failures loads being associated with one of the measured plurality of melt layer thicknesses, selecting a first failure load from the plurality of measured failure loads responsive to determining that the first failure load corresponds to a predetermined weld strength, and selecting a first melt layer thickness from the plurality of measured melt layer thicknesses that is associated with the selected first measured failure load.
Abstract:
A laser welding method and system for joining portions of first and second workpieces of thermoplastic material that is partially permeable to a laser beam but absorbs radiation from the laser beam. The first and second workpieces, which are made of material that absorbs radiation from a laser beam, are clamped together. A mask is placed on a first surface of the first workpiece, the first surface being opposite the surface engaging the second workpiece. The mask is impermeable to a laser beam and forms a slot for passing a laser beam to the portion of the first surface of the upper workpiece exposed by the slot, so that heating and melting of the material of the workpieces is limited to the width of the slot. A laser beam is directed onto the slot and moved in a manner to illuminate the slot to melt and join the workpieces.
Abstract:
An apparatus 200 for joining a first film portion and a second film portion together along a seal line. The apparatus includes a horn 208 and anvil 220. The anvil is positioned close to the horn. The horn or anvil has a face 216, 226 that is rotatable about a rotation axis. The face has a raised profile, a height of the raised profile relative to the face has a dimension corresponding to 50% to 150% of a thickness of the first film portion or the second film portion. Another option is that the raised profile has a tapered side, the tapered side having an angle between 0.5 and 5 degrees relative to a topmost surface of the raised profile. The face is positioned such that the raised profile extends along the circumference such that continuous running contact is provided between the raised profile and the other of the one of the horn or the anvil when rotated about the rotation axis, to form the seal line without any external structure to control a distance between the horn/anvil. A traction pattern, and a cut-and-seal feature are also disclosed.
Abstract:
A rotary hot plate welding system joins portions of two parts made of thermoplastic material by inserting the two parts into a clamping mechanism with the two parts spaced from each other. The clamping mechanism is mounted on a turntable that is rotatable around an axis that is parallel to the direction of movement of the parts when they are moved to clamp them together. By indexing the turntable, the two parts are moved into alignment with at least one stationary heated plate extending between the two parts to be joined, to melt the opposed surfaces of the two parts. The turntable is then indexed to a station where the melted surfaces of the two parts are clamped together to press the melted surfaces into direct contact with each other. The two parts are cooled while they remain clamped together, in direct contact with each other.