Abstract:
The invention provides uncharged water-soluble silica-adsorbing polymers for suppressing electroendoosmotic flow and to reduce analyte-wall interactions in capillary electrophoresis. In one aspect of the invention, one or more of such polymers are employed as components of a separation medium for the separation of biomolecules, such as polynucleotides, polysaccharides, proteins, and the like, by capillary electrophoresis. Generally, such polymers are characterized by (i) water solubility over the temperature range between about 20 DEG C to about 50 DEG C, (ii) concentration in a separation medium in the range between about 0.001 % to about 10 % (weight/volume), (iii) molecular weight in the range of about 5 x 10 to about 1 x 10 daltons, and (iv) absence of charged groups in an aqueous medium having pH in the range of about 6 to about 9. In one embodiment, polymers of the invention are selected from the group consisting of polylactams, such as polyvinylpyrrolidone; N,N-disubstituted polyacrylamides; and N-substituted polyacrylamides. In accordance with the method of the invention, a sufficient amount of polymer adsorbs to the capillary surface to establish a zone of high viscosity that shields the analyte from the wall and impedes the movement of an electrical double layer under an electric field.
Abstract:
The invention generally relates to methods for detecting fetal nucleic acids and methods for diagnosing fetal abnormalities. In certain embodiments, the invention provides methods for determining whether fetal nucleic acid is present in a maternal sample including obtaining a maternal sample suspected to include fetal nucleic acids, and performing a sequencing reaction on the sample to determine presence of at least a portion of a Y chromosome in the sample, thereby determining that fetal nucleic acid is present in the sample. In other embodiments, the invention provides methods for quantitative or qualitative analysis to detect fetal nucleic acid in a maternal sample, regardless of the ability to detect the Y chromosome, particularly for samples including normal nucleic acids from a female fetus.
Abstract:
The invention provides uncharged water-soluble silica-adsorbing polymers for suppressing electroendoosmotic flow and to reduce analyte-wall interactions in capillary electrophoresis. In one aspect of the invention, one or more of such polymers are employed as components of a separation medium for the separation of biomolecules, such as polynucleotides, polysaccharides, proteins, and the like, by capillary electrophoresis. Generally, such polymers are characterized by (i) water solubility over the temperature range between about 20 DEG C to about 50 DEG C, (ii) concentration in a separation medium in the range between about 0.001 % to about 10 % (weight/volume), (iii) molecular weight in the range of about 5 x 10 to about 1 x 10 daltons, and (iv) absence of charged groups in an aqueous medium having pH in the range of about 6 to about 9. In one embodiment, polymers of the invention are selected from the group consisting of polylactams, such as polyvinylpyrrolidone; N,N-disubstituted polyacrylamides; and N-substituted polyacrylamides. In accordance with the method of the invention, a sufficient amount of polymer adsorbs to the capillary surface to establish a zone of high viscosity that shields the analyte from the wall and impedes the movement of an electrical double layer under an electric field.
Abstract:
The present invention relates to a fluorescent polynucleotide analyzer system which utilizes electrophoresis, and in particular, capillary-based electrophoresis. The analyzer system of the present invention is comprised of, in combination, a capillary containing an electrophoretic separation medium, a means for introducing a mixture of fluorescently labeled polynucleotide fragments into the capillary, detection means for detecting the fluorescently labeled polynucleotide fragments, including the simultaneous detection of multiple fluorescent labels, and, means for introducing and removing electrophoretic separation medium from the capillary.
Abstract:
The invention provides improved methods for synthesizing polynucleotides, such as DNA and RNA, using renewable initiators coupled to a solid support. Using the methods of the invention, specific sequences of polynucleotides can be synthesized de novo, base by base, in an aqueous environment, without the use of a nucleic acid template.
Abstract:
The invention provides improved methods for synthesizing polynucleotides, such as DNA and RNA, using renewable initiators coupled to a solid support. Using the methods of the invention, specific sequences of polynucleotides can be synthesized de novo , base by base, in an aqueous environment, without the use of a nucleic acid template.
Abstract:
The invention generally relates to methods for detecting fetal nucleic acids and methods for diagnosing fetal abnormalities. In certain embodiments, the invention provides methods for determining whether fetal nucleic acid is present in a maternal sample including obtaining a maternal sample suspected to include fetal nucleic acids, and performing a sequencing reaction on the sample to determine presence of at least a portion of a Y chromosome in the sample, thereby determining that fetal nucleic acid is present in the sample. In other embodiments, the invention provides methods for quantitative or qualitative analysis to detect fetal nucleic acid in a maternal sample, regardless of the ability to detect the Y chromosome, particularly for samples including normal nucleic acids from a female fetus.