Abstract:
The invention relates to composing a lighting atmosphere from an abstract description for example a lighting atmosphere specified in XML, wherein the lighting atmosphere is generated by several lighting devices, by automatically rendering the desired lighting atmosphere from the abstract description. The abstract description describes the type of light with certain lighting parameters desired at certain semantic locations at certain semantic times. This abstract atmosphere description is automatically transferred to a specific instance of a lighting system (14, 16, 18). The invention has the main advantage that it allows to create light scenes and lighting atmospheres at a high level of abstraction without requiring the definition of a lighting atmosphere or scene by setting the intensity, color, etc. for single lighting units or devices which can be very time consuming and cumbersome, particularly with large and complex lighting systems comprising many lighting devices.
Abstract:
Disclosed is a retractable lighting fixture having a retractable LED lighting layer. One or more optical layers(40, 240A/B, 340A/B, 440) may optionally be provided over the LED lighting layer (30, 230, 330, 430). The optical layer(s) and the LED lighting layer may optionally be movable relative to one another between at least being in an expanded spaced relation to one another and a compressed relation to one another. One or more LEDs (34, 134, 234A/B, 334A/B, 434) on the LED lighting layer may be individually controllable and such LEDs (34, 134, 234A/B, 334A/B, 434)may be selectively extinguished when they are in a retracted position.
Abstract:
The invention provides a user interaction system (100) and a method of controlling a lighting system. The user interaction system (100) comprises a display (106), a means for receiving a location indication (102), a location identification means (104) and an overlay image creator (108). The display (106) displays a subarea image and an overlay image. The subarea image is an image of a specific subarea of the environment. The location identification means (104) detects which specific location in the environment is indicated by the location indication. The overlay image creator (108) generates the overlay image. The overlay image comprises information related to a lighting effect which is obtainable by the lighting system at the specific location. The obtainable effect is an effect of at least two controllable light sources of the lighting system. The information which is related to the obtainable lighting effect is based on a lighting system model (110) which represents effects that are obtainable in the environment by controllable light sources of the lighting system.
Abstract:
The invention relates to composing a lighting atmosphere from an abstract description for example a lighting atmosphere specified in XML, wherein the lighting atmosphere is generated by several lighting devices, by automatically rendering the desired lighting atmosphere from the abstract description. The abstract description describes the type of light with certain lighting parameters desired at certain semantic locations at certain semantic times. This abstract atmosphere description is automatically transferred to a specific instance of a lighting system (14, 16, 18). The invention has the main advantage that it allows to create light scenes and lighting atmospheres at a high level of abstraction without requiring the definition of a lighting atmosphere or scene by setting the intensity, color, etc. for single lighting units or devices which can be very time consuming and cumbersome, particularly with large and complex lighting systems comprising many lighting devices.
Abstract:
The invention relates to a method of controlling a lighting system with multiple controllable light sources 3a, 3b and a system therefor. According to a first as¬ pect, influence data of the lighting system are obtained, which data represent the effect of one or more of the light sources 3a, 3b on the illumination of one or more sections of an illuminated environment. In an optimization method, sets of control commands are continuously determined, a predicted light distribution for these control commands is determined from the influence data, and a colorimetric difference between the predicted light distribution and a target light distribution is determined. A plurality of adjustment steps are performed to minimize the colorimetric difference. According to a second aspect, a neural network is trained with the influ¬ ence data and a set of control commands for controlling the lighting system is deter¬ mined with the use of the neural network.