Abstract:
A collision avoidance system including a plurality of inclinometers in offset wellbores and a processing unit for receiving a vibration signal from the inclinometers and determining a distance between the offset wellbore and a central wellbore based on the vibration signal. Also, a method of avoiding wellbore collisions by determining relative movement of a drill bit within a central wellbore including the steps of determining an original distance between the central wellbore and an offset wellbore, drilling in the central wellbore so that the drill bit moves a known distance with respect to the offset wellbore, capturing vibration readings during the drilling step, characterizing movement of the drill bit based on the drilling step, and calculating drill bit movement during drilling with respect to the offset wellbore based upon the characterizing step.
Abstract:
A collision avoidance system including a plurality of inclinometers in offset wellbores and a processing unit for receiving a vibration signal from the inclinometers and determining a distance between the offset wellbore and a central wellbore based on the vibration signal. Also, a method of avoiding wellbore collisions by determining relative movement of a drill bit within a central wellbore including the steps of determining an original distance between the central wellbore and an offset wellbore, drilling in the central wellbore so that the drill bit moves a known distance with respect to the offset wellbore, capturing vibration readings during the drilling step, characterizing movement of the drill bit based on the drilling step, and calculating drill bit movement during drilling with respect to the offset wellbore based upon the characterizing step.
Abstract:
When performing nuclear (e.g., SPECT or PET) and CT scans on a patient, a volume cone -beam CT scan is performed using a cone-beam CT X-ray source (20) and an offset flat panel X-ray detector (22). A field of view of the X-ray source overlaps a field of view of two nuclear detector heads (18), and the offset of the X-ray detector (22) minimizes interference with nuclear detector head movement about a rotatable gantry (16). Additionally, a locking mechanism (80) provides automatically locking of the X-ray detector (22) in each of a stowed and operation position, improving safety and CT image quality.
Abstract:
A collision avoidance system including a plurality of inclinometers in offset wellbores and a processing unit for receiving a vibration signal from the inclinometers and determining a distance between the offset wellbore and a central wellbore based on the vibration signal. Also, a method of avoiding wellbore collisions by determining relative movement of a drill bit within a central wellbore including the steps of determining an original distance between the central wellbore and an offset wellbore, drilling in the central wellbore so that the drill bit moves a known distance with respect to the offset wellbore, capturing vibration readings during the drilling step, characterizing movement of the drill bit based on the drilling step, and calculating drill bit movement during drilling with respect to the offset wellbore based upon the characterizing step.
Abstract:
A method and system for performing biopsies can include an imaging system (190) for obtaining diagnostic images of a target region (200); a tracking system (100); a probe (75) having a deployable biopsy needle for performing a biopsy procedure where the tracking system generates tracking information for at least one of the probe and the biopsy needle; an ultrasound imaging system (50) for obtaining ultrasound imaging of the target region; and a computer (150) in communication with the tracking system, the imaging system and the ultrasound imaging system. The computer can register the tracking system with the imaging system. The computer transfers a marking (500) of a biopsy site associated with the biopsy procedure from the ultrasound imaging to the diagnostic images based on the tracking information and the registration of the tracking system with the diagnostic images.
Abstract:
When performing nuclear (e.g., SPECT or PET) and CT scans on a patient, a volume cone -beam CT scan is performed using a cone-beam CT X-ray source (20) and an offset flat panel X-ray detector (22). A field of view of the X-ray source overlaps a field of view of two nuclear detector heads (18), and the offset of the X-ray detector (22) minimizes interference with nuclear detector head movement about a rotatable gantry (16). Additionally, a locking mechanism (80) provides automatically locking of the X-ray detector (22) in each of a stowed and operation position, improving safety and CT image quality.