Abstract:
An exemplary infusion system for accessing an implanted device is disclosed comprising an insertion assembly, a hub comprising a sealable path configured to receive at least a portion of the insertion assembly, a flexible catheter attached to the hub and configured to receive at least a portion of the insertion assembly, and an extension tube attached to the hub. The hub may comprise a manifold element configured to provide fluid communication between the flexible catheter and the extension tube. The hub may also comprise a septum configured to seal the sealable path upon removal of the insertion assembly from the flexible catheter. The extension tube may also be configured to receive at least a portion of the insertion assembly. Exemplary methods of providing a fluid communication path to an implanted device are also disclosed.
Abstract:
An access port for subcutaneous implantation is disclosed. Such an access port may comprise a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. Further, the access port may include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. Further, the subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is engraved or otherwise defined by the access port, so as to be visible after implantation via x-ray imaging technology.
Abstract:
An insertion device for use in assisting with the placement of a medical device within the body of a patient is disclosed. For example, the insertion device can be employed to assist with the placement of an introducer, which provides a conduit for insertion of a catheter into the body. In one embodiment, the insertion device comprises a needle that is removably disposed within a bore defined by the medical device, and a needle retraction assembly. The needle retraction assembly can position the needle in any one of a first position wherein a distal tip of the needle is disposed a predetermined distance distal to a distal end of the medical device, a second position wherein the needle distal tip is disposed distal but proximate to the distal end of the medical device, and a third position wherein the needle distal tip is retracted within the medical device bore.
Abstract:
A needle guide assembly for inserting a needle into the body of a patient in order to access a subcutaneous target, such as a vessel, is disclosed. In one embodiment, the needle guide assembly comprises a needle guide body that is configured to at least indirectly and removably attach to an image producing device, such as an ultrasound probe. The needle guide body defines at least first and second elongate guide channels. Each guide channel defines a unique insertion angle with respect to a longitudinal axis of the ultrasound probe. Further, each guide channel is configured to accept needles of differing gauges. In other embodiments other needle guide assemblies are disclosed that include multiple guide channels for inserting a needle at a variety of insertion angles into the patient's body. Related methods are also disclosed. In yet other embodiments, needle guide assemblies including needle stop features are disclosed.
Abstract:
A septum for use in sealably covering a fluid cavity of an implantable medical device, such as an access port, is disclosed. The septum is resilient and includes a reinforcement structure that bolsters septum placement over the fluid cavity so as to inhibit unintended separation of the septum from the medical device when the fluid cavity is under pressure, such as during power injection of fluid into the fluid cavity. In one embodiment the septum comprises a resilient septum body that includes a flange disposed about a perimeter thereof. A reinforcement component is disposed in the flange for reinforcing engagement of the flange with a corresponding groove defined about an opening to the fluid cavity of the medical device so as to inhibit unintended detachment of the septum from the medical device. The reinforcement component in one embodiment includes an annular cord disposed in the flange.