Abstract:
The invention concerns a process for replacing an initial outermost coating layer of a coated optical lens with a layer of a new final coating having surface properties different from those of said initial outermost coating which comprises: (a) providing a coated optical lens having an initial outermost coating layer having a surface contact angle with water of at least 65°; (b) subjecting the initial outermost coating layer to a treatment with activated chemical species at about atmospheric pressure, and for less than one minute, in order there is obtained a treated surface having a contact angle with water of 10° or less; and (c) depositing on said treated surface a layer of a final coating having surface properties different from those of said initial outermost coating.
Abstract:
The method comprises treating the metallic nanoparticles with at least one stabilizing compound having at least one functional group selected from phosphoric and phosphonic acids and salts thereof, phosphine, phosphine oxide and phosphonium, whereby the dispersion is stable for at least one week.
Abstract:
The invention relates to a method for edging an optical article comprising the following steps: - providing an optical article having two main faces, at least one of which being coated with an outermost layer; - fixing the optical article to a chuck by means of a holding pad inserted there between and adhering to both the optical article and the chuck, the surface of the holding pad to be contacted with the optical article being coated with an adhesive material; and - edging the optical article with an edging device; wherein prior the step of fixing the optical article to the chuck, at least one temporary layer of an organic material is formed onto said outermost layer of the optical article, the organic material of the temporary layer comprising at least one organic compound having a fluorinated functional moiety, and a linking functional moiety capable of establishing at least one intermolecular bond or interaction with the adhesive material of the holding pad.
Abstract:
The process comprises the steps of : (a) subjecting said at least one main face of an optical lens to a corona discharge or atmospheric plasma treatment; (b) dipping the optical lens in a curable coating composition to deposit a layer of the curable coating composition on said main face ; and (c) curing the curable coating composition layer ; wherein during the whole process the optical lens is carried by a same lens holder so that the said lens face is freely accessible and without necessitating manual handling of the lens.
Abstract:
An apparatus (10) for dip coating lenses comprises a tank (20) for containing a coating liquid (40), a coating chamber (30) having a lens support (32) for one or more ophthalmic lenses. The tank is in fluid communication with the çoating chamber for permitting the flow of coating liquid between the tank and the coating chamber. The apparatus has a first position where the coating chamber is located above the tank and second position where the tank is located above the coating chamber.
Abstract:
The invention provides a machine for coating an optical article with an anti- soiling coating composition, comprising a vacuum chamber (8) configured to receive the optical article, a vacuum pump (20) connected to the vacuum chamber (8), a plasma generator (11) configured to carry out a vacuum plasma treatment of the optical article, an evaporation device (10) configured to carry out a vacuum evaporation treatment of the composition for depositing it on the optical article, a control unit (2) controlling the plasma generator for removing an initial outermost anti-soiling coating of the article, controlling the evaporation device for recoating the article with the anti-soiling coating composition, being configured to causes the vacuum pump (20) to suck gases from the chamber (8) during vacuum plasma treatment and being further configured to causes the vacuum pump (20) not to suck gases from the chamber (8) during vacuum evaporation treatment.
Abstract:
The present invention relates to a process for modifying the surface of nanoparticles, comprising providing nanoparticles, activating the surface of said nanoparticles by treatment with energetic species, and treating said nanoparticles with at least one gaseous phosphorus-containing compound having at least one functional group selected from a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a phosphinous acid group, salts thereof and derivatives thereof, a phosphine group and derivatives thereof, a phosphine oxide group and derivatives thereof, a phosphite group and a phosphonium group, resulting in chemical grafting of said phosphorus-containing compound on the surface of the nanoparticles. The invention also relates to a method of preparation of a stabilized dispersion of nanoparticles using the above prepared nanoparticles.
Abstract:
A process for edging an optical lens for conforming the optical lens to the size and shape of a lens frame into which the optical lens is to be accommodated, said process comprising : a) providing an optical lens having a convex surface, the convex surface being provided with an anti-smudge topcoat rendering the optical lens inappropriate for edging ; b) fixing a mounting element on the convex surface of the optical lens, preferably on its center, by means of an adhesive pad adhering both to the mounting element and the convex surface of the optical lens to form a mounting element/optical lens assembly ; c) placing the mounting element/optical lens assembly in a grinding machine so that the optical lens is firmly maintained ; and d) edging the optical lens to the intended size and shape, wherein, prior to step (b) of fixing the mounting element, the anti-smudge topcoat on the convex surface of the optical lens is pre-treated with a solvent selected from the group consisting of alkanols and dialkylketones under a mechanical stress.