Abstract:
A method and system for managing a cell sectorized by both an angle in azimuth and a distance from a base station are disclosed. A wireless communication system comprises a base station and a cell. The base station comprises an antenna array for generating a plurality of directional beams which are steerable both in azimuth and elevation. The cell is sectorized into a plurality of sectors defined in accordance with an angle in azimuth and a distance from the base station. At least one directional beam serves each sector. Beams serving adjacent sectors overlap each other, and a softer handover in a cell is performed in the overlapping region.
Abstract:
A wireless communication method of exploiting the radio frequency (RF) physical environment to establish a sufficient number of usable multiple paths of RF propagation for facilitating communications. The method is implemented in a wireless communication system including at least one transmitter and at least one receiver. The receiver's antenna is directed towards one of a plurality of reception paths and receives a data stream from the transmitter via the reception path that the receiver antenna is directed towards. The receiver decodes the data stream, reconstructs a modulation pattern of the decoded data stream, and subtracts the reconstructed data stream from a sum of all of the signals received by the receiver via the reception paths. The receiver provides received signal direction information associated with reception paths to the transmitter. The transmitter adjusts and/or eliminates one or more of the reception paths that are unusable based on the signal direction information.
Abstract:
A method and system for coordinating the use of beam forming between two communicating entities in a wireless communication system is disclosed. The two entities may communicate control information regarding their respective use of beam forming. A correction factor for at least one entity is provided wherein said entity may reduce or withhold its beam adjustment in order to correct any error measured in the alignment of its beam with respect to the beam of the other entity with which it is communicating.
Abstract:
A wireless communication system and method generates and shapes one or more three-dimensional control channel beams for transmitting and receiving signals. Each three-dimensional beam is directed to cover a particular coverage area and beam forming is utilized to adjust bore sight and beam width of the three-dimensional beam in both azimuth and elevation, and the three-dimensional control channel beam is identified. In another embodiment, changes in hot-zones or hot-spots, (i.e., designated high volume user coverage areas), are managed by a network cell base station having at least one antenna. Each of a plurality of wireless transmit/receive units (WTRUs) served by the base station use a formed beam based on one or more beam characteristics. When the coverage area is changed, the base station instructs at least one of the WTRUs to change its beam characteristics such that it forms a return beam concentrated on the antenna of the base station.
Abstract:
A wireless communication method of exploiting the radio frequency (RF) physical environment to establish a sufficient number of usable multiple paths of RF propagation for facilitating communications. The method is implemented in a wireless communication system including at least one transmitter and at least one receiver. The receiver's antenna is directed towards one of a plurality of reception paths and receives a data stream from the transmitter via the reception path that the receiver antenna is directed towards. The receiver decodes the data stream, reconstructs a modulation pattern of the decoded data stream, and subtracts the reconstructed data stream from a sum of all of the signals received by the receiver via the reception paths. The receiver provides received signal direction information associated with reception paths to the transmitter. The transmitter adjusts and/or eliminates one or more of the reception paths that are unusable based on the signal direction information.
Abstract:
A matrix-fed circular array system includes a plurality of antennas, a plurality of azimuth matrices in communication with the antennas, and a plurality of elevation matrices in communication with the azimuth matrices. The array system forms M x N beams, where M is the number of azimuth beams, and N is the number of elevation beams. In another embodiment, through the use of a Shelton-Butler or Butler matrix which includes a plurality of hybrids, the system outputs omni-directional pancake-shaped radiation patterns that are isolated from each other when a communication signal is input into the system. In yet another embodiment, the system uses a beam forming network including two Shelton-Butler matrices. A first one of the Shelton-Butler matrices creates omni-directional pancake beams that are isolated from each other, and a second Shelton-Butler matrix creates multiple directive beams in an azimuth plane.
Abstract:
Signals encoded with watermark information are generated and broadcast into a protected area for capture by illicit recording devices along with their intended targets. An illicit recording in which at least a portion of the broadcast watermark signals are recorded is obtained and correlated with a known position of the broadcast watermark signals to yield the location of illicit recording devices. In an alternate embodiment, a surveillance device, being image and time synchronized with a signal broadcasting device, monitors and records the protected area. Illicit recordings containing the broadcast watermark are obtained and correlated with corresponding recordings taken by the surveillance device to identify the location of illicit recording devices. In an alternate embodiment, the surveillance device further monitors the quality of the broadcast watermark signals and adjusts them accordingly to achieve a desired quality level.
Abstract:
A method and apparatus for preventing communication link degradation due to wireless transmit/receive unit (WTRU) position changes and detrimental orientation. When it is determined that at least one of a plurality of WTRUs in a communication link is moving or is going to move, the radio frequency (RF) beam pattern and/or link characteristics of a WTRU is adjusted to enhance communications. In another embodiment, the RF beam pattern and/or link characteristics are adjusted when it is determined that a gap in the communication link has occurred or will occur because one of the WTRUs has disengaged or is going to disengage from the communication link. In another embodiment, when a WTRU is in an undesired orientation, the WTRU instructs a user to physically move the WTRU. In another embodiment, information about the orientation of a WTRU is conveyed to a network that makes adjustments to enhance communications with the WTRU.
Abstract:
A wireless communication method and antenna system for determining the direction of arrival (DOA) of received signals in azimuth and elevation, (i.e., in three dimensions), to form a beam for transmitting and receiving signals. The system includes two antenna arrays, each having a plurality of antenna elements, two first stage multi-mode-port matrices, at least one second stage multi-mode-port matrix, an azimuth phase detector, an elevation amplitude detector, a plurality of phase shifters and a transceiver. The antenna arrays and the first stage multi-mode-port matrices form a plurality of orthogonal omni-directional modes. Each of the modes has a characteristic phase set. Two of the modes' phases are used to determine DOA in azimuth. The second stage multi-mode-port matrix forms a sum-mode and a difference-mode used to determine the DOA of the received signals in elevation. A beam is formed in the direction of the received signals by adjusting the phase shifters.
Abstract:
A method and system for coordinating the use of beam forming between two communicating entities in a wireless communication system is disclosed. The two entities may communicate control information regarding their respective use of beam forming. A correction factor for at least one entity is provided wherein said entity may reduce or withhold its beam adjustment in order to correct any error measured in the alignment of its beam with respect to the beam of the other entity with which it is communicating.