Abstract:
Embodiments described herein relate to managing communications for a first subscription and a second subscription of a wireless communication device, including, but not limited to, decoding a data block containing scheduling information for receiving System Information Blocks (SIBs) on the first subscription, determining collision between the SIBs on the first subscription and activities on the second subscription, and scheduling the SIBs on the first subscription and the activities on the second subscription based, at least in part, on repetition period of the SIBs.
Abstract:
A radio base station performs reverse link rate control in a wireless communication network by "stealing" bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
Abstract:
Certain aspects of the present disclosure are generally directed to techniques for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs). In some cases, a UE may be configured to share RF components and processing between multiple SIMs belonging to a same operator.
Abstract:
Two or more different sets of access parameters are stored in mobile station memory. When the mobile station sends an access message on the reverse access channel, it selects a set of access parameters based on the type of service. For high priority services, the mobile station selects a set of access parameters that reduces call setup latency. The network can change a selected set of access parameters by sending an access parameter message containing the updated parameter values. The access parameter message includes a priority field indicating the selected set of access parameters to be updated.
Abstract:
OP080377 of the ori ginating source and the network path. This information is r elayed using the Network layer to provide feedback to the 5 MAC layer in order to improve the end-to-end performance of VoIP services.
Abstract:
In a method for multicast and broadcast synchronization a data payload frame is generated from a data payload. A frame number is assigned to the data payload frame, wherein the frame number includes a generating time of the data payload frame. The data payload frame is distributed to a plurality of base stations in a wireless access system. The offset spans a travel time of a data payload frame from the controller to the plurality of base stations as w ell as a scheduling time and a multiplexing time.
Abstract:
A wireless communication network receives packet data transmissions from a mobile station, tracks the occurrence of retransmission requests sent to the mobile station responsive thereto, and modifies the radio link assignments for the mobile station based at least in part on said tracking. For example, a base station controller may be configured to manage the active set of a mobile station based on the number and/or frequency of NACK messages sent by the radio base stations in the mobile station's active set(s) responsive to packet data transmissions from the mobile station. The ACK/NACK response of a radio base station to mobile station transmissions may be used to detect link imbalance, identify poor reverse link channels, etc. The base station controller can add or change radio links based on the ACK/NACK response to improve reverse link performance, trigger voice call handoff, correct link imbalance, etc.
Abstract:
Certain aspects of the present disclosure provide a technique for wireless communications by a user equipment (UE). The UE monitors a concurrent operation on multiple operating bands within a same subscriber identity module (SIM) or between multiple SIMs that involves sharing at least one radio frequency (RF) component. The UE enables or disables the at least one RF component based on the monitoring.
Abstract:
To initiate a communication session between a mobile station and an application server, the mobile station sends a reconnect message to a base station to reestablish a communication channel for a dormant packet data session. The reconnect message includes an encapsulated call control message to said application server. The base station extracts the call control message from the reconnect message and forwards the call control message towards the application server, while proceeding to reestablish a communication channel with the mobile station.
Abstract:
Noise is measured at one or more base stations in a mobile communication system during periodic silence periods. A periodic silence period is defined for at least one carrier that is independent of reverse link channel frame boundaries. The radio base stations transmits silence parameters defining the periodic silence period to mobile stations, which stop transmitting during the periodic silence periods. A time reference is provided to the mobile stations to synchronize the silence periods for all mobile stations.