Abstract:
Various communication systems may benefit from improved network access. For example, communication systems may benefit from deriving a radio network temporary identification at both a user equipment and a base station, without requiring additional uplink signaling. A method, in certain embodiments, may include sending a short identification from a user equipment to a base station during a contention based access instance. The short identification is generated based on an initial cell radio network temporary identification. The method may also include receiving at the user equipment a user equipment radio network temporary identification from the base station. The user equipment radio network temporary identification is based on the short identification. In addition, the method may include generating at the user equipment a subsequent cell radio network temporary identification based at least on the short identification and the received user equipment radio network temporary identification.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a user equipment (UE) for performing a random access (RA) procedure is provided. The method includes transmitting a first message including a RA preamble and a UE identifier (ID) to a base station (BS), and receiving a second message including a sequence index of the RA preamble from the BS.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive, from a base station, a downlink transmission in a radio frequency spectrum band and may identify reference resources in the downlink transmission for computing a channel state information (CSI) report. The UE may generate the CSI report based at least in part on the identified reference resources and transmit, in the radio frequency spectrum band, the CSI report in a random access request message to the base station. The base station may receive the request message and identify CSI associated with the band based at least in part on the CSI report included in the random access request message. The base station may transmit, to the UE, a random access response message based at least in part on the identified CSI in the radio frequency spectrum band.
Abstract:
A terminal device is operative to receive a broadcast message (91) from a cellular network, the broadcast message (91) including at least one bit associated with coverage enhancement, CE, operation of the terminal device. The terminal device is operative to control, when the terminal device is in CE operation, a radio interface to selectively delay, based on the at least one bit included in the broadcast message (91), a CE level dependent repetition of a random access preamble transmission (93, 94).
Abstract:
A communication device determines, in connection with a prior uplink multi- user (UL MU) communication in which the communication device participated, whether the communication device is to use one or more first channel access parameters, or one or more second channel access parameters for accessing a communication medium for a single user (SU) transmission by the communication device, where using the one or more first channel access parameters is associated with a greater probability of obtaining access to the communication medium as compared to using the one or more second channel access parameters. Depending on the determination made, the communication device uses the one or more first channel access parameters, or the one or more second channel access parameters to attempt to access the communication medium. In response to accessing the communication medium, the communication device transmits the SU transmission via the communication medium.
Abstract:
A method and apparatus for contention-based communication over a shared channel is provided. Devices wishing to communicate over the channel transmit channel usage requests to a controller. The controller determines current demand for the channel based on the number of requests received, and dynamically allocates communication resources to the shared channel based on the demand. The controller then transmits grant messages directing the devices to use the shared channel in an indicated manner. The shared channel can be subdivided into sub-channels, each of which is contention-based. The controller can also allocate devices to sub-channels based on the type of request. The requests are transmitted over an access indication channel which can also be subdivided into sub-channels.
Abstract:
Various aspects described herein relate to communicating using a configurable bandwidth. A user equipment (UE) can receive a control channel from a serving evolved Node B (eNB), where the control channel includes a resource grant for an uplink shared data channel including a number of resource block groups starting from a starting resource block group in an allocation space, and where the allocation space includes a plurality of resource block groups in a frequency domain over a plurality of symbols in a time domain. The UE can transmit data in the uplink shared data channel starting from the starting resource block group in the allocation space and continuing through the number of resource block groups in the allocation space over the frequency domain first and over the time domain second.
Abstract:
A network node is connected to a plurality of antenna nodes that are located along a constrained path where a plurality of wireless communication devices are located. The antenna nodes are controlled (302) to maintain reception radio lobes substantially along the path such that the wireless communication devices can perform uplink radio communication with the network node via the reception radio lobes. At least one RF signal is detected (304) in a PRACH, with a first PRACH configuration. A determination (306) is made of a radio frequency offset of the detected RF signal. A determination (308) is then made that the at least one RF signal originates from a wireless communication device of a specific subset among the plurality of wireless communication devices. Each wireless communication devices in the specific subset is associated with the radio frequency offset. A second PRACH configuration that is common to all wireless communication devices in the specific subset of wireless communication devices is then provided (310) to the wireless communication device.
Abstract:
An example method in a user equipment comprises generating (1220) a random access preamble signal and transmitting (1230) the random access preamble signal. This generating of the random access preamble signal comprises generating a Single-Carrier Frequency-Division Multiple Access, SC-FDMA, random access preamble signal comprising two or more consecutive preamble symbol groups, each preamble symbol group comprising a cyclic prefix portion and a plurality of identical symbols occupying a single subcarrier of the SC-FDMA random access preamble signal. The single subcarrier for at least one of the preamble symbol groups corresponds to a first subcarrier frequency and the single subcarrier for an immediately subsequent one of the preamble symbol groups corresponds to a second subcarrier frequency.