摘要:
A control system is presented for controlling operation of a vertical axis wind turbine (VAWT) for generating energy from an incoming fluid flow. The control system comprises at least one flow affecting arrangement associated with at least one blade of the VAWT and a control unit connected to said flow affecting arrangement, the flow affecting arrangement comprising two flow affecting units located in two opposite sides of the blade respectively at a leading edge thereof, each flow affecting unit being operable for creating a blowing jet at the respective side of the blade thereby inducing an increase in a fluid flow momentum, the control unit being configured and operable for selectively activating the flow affecting units in alternating fashion according to a predetermined time pattern to oscillate the blowing jet at the opposite sides of the blade.
摘要:
A control system is presented for controlling operation of a vertical axis wind turbine (VAWT) for generating energy from an incoming fluid flow. The control system comprises at least one flow affecting arrangement associated with at least one blade of the VAWT and a control unit connected to said flow affecting arrangement, the flow affecting arrangement comprising two flow affecting units located in two opposite sides of the blade respectively at a leading edge thereof, each flow affecting unit being operable for creating a blowing jet at the respective side of the blade thereby inducing an increase in a fluid flow momentum, the control unit being configured and operable for selectively activating the flow affecting units in alternating fashion according to a predetermined time pattern to oscillate the blowing jet at the opposite sides of the blade.
摘要:
A method and device utilizes boundary layer separation control for the purpose of wake vortex alleviation. Trailing vortices are manipulated by varying the spanwise vortex-sheet strength via either passive or active boundary layer separation control. Boundary layer separation can be diminished or promoted to vary vortex properties, such as locations and strengths, so as to generate wake signatures that are unstable, resulting in complex three-dimensional interaction and rapid destruction of vortex coherence in the wake. Separation control can be achieved in either a time dependent or a time-invariant mode.
摘要:
The present invention relates to enhancing performance of fans and propellers using outsized Gurney flaps. Specifically, the current invention proposes the application of 'outsized Gurney flaps' (OGFs) to the trailing-edges of fan blades. According to an exemplary embodiment of the current invention, the Gurney flaps are larger than 10% of the fan blade chord length. Attaching OGFs is not only non-obvious; it seems counterintuitive, because it is akin to placing a large bluff body onto a flow. Preliminary experimental data acquired at Reynolds numbers typically exist during fan operation on idealized blade profiles showed a 100% increase in the generated lift and 40% to 60% increase in aerodynamic efficiency. This translates to significant improvements in fan performance at a given rpm, and/or significant saving in power and noise reduction for the same aerodynamic performance. The current invention may increase performance, may decrease energy consumption, may decrease size, may decrease cost, and may increase performance of: computer cooling fans, personal upright and ceiling fans, refrigeration fans, air conditioning fans, automotive fans, ventilation, vacuuming, small-scale propellers, etc.
摘要:
The current invention provides significant performance improvements or significant energy savings for fans used in these applications: personal, industrial and automotive cooling, ventilation, vacuuming and dust removal, inflating, computer component cooling, propulsors for unmanned and manned air vehicles, propulsors for airboats, air-cushion vehicles, airships and model aircraft. Additionally, the invention provides higher performance such as higher lift and higher lift efficiency to small air vehicles. These advantages are achieved by using plasma actuators to provide active flow control effectors into thin fan blades and wing.
摘要:
An aerial vehicle controlled and propelled by oscillatory momentum generators and method of flying a vehicle. A vehicle capable of flight is disclosed. The vehicle includes at least one wing including at least one oscillatory momentum generator mounted therein. A thrust force from the oscillatory momentum generator is directed outwards over the wing causing a causing a lift-generating air flow over a surface of the at least one wing. Further disclosed is a method of flying a vehicle including providing at least one wing having at least one oscillatory momentum generator mounted therein and applying a thrust force generator which is directed outwards over the wing so that a lift generating air flow is created.
摘要:
Item of footwear and its method of making wherein an inner sole (2) is assembled within an outer sole (1) having upturned peripheral edges (1a) receiving the inner sole (2) with peripheral portions of an upper portion (3) fitting between the upturned peripheral edge (1a) and the inner sole (2). The outer sole (1), inner sole (2), and upper portion (3) are each formed at least partially of a thermoplastic material at adjoining surfaces and these adjoining surfaces are sealed together to unify the shoe in a heat-sealing step.
摘要:
A method and device utilizes boundary layer separation control for the purpose of wake vortex alleviation. Trailing vortices are manipulated by varying the spanwise vortex-sheet strength via either passive or active boundary layer separation control. Boundary layer separation can be diminished or promoted to vary vortex properties, such as locations and strengths, so as to generate wake signatures that are unstable, resulting in complex three-dimensional interaction and rapid destruction of vortex coherence in the wake. Separation control can be achieved in either a time dependent or a time-invariant mode.