Abstract:
The present invention provides a collision avoidance apparatus and method employing stereo vision applications for adaptive vehicular control The stereo vision applications are comprised of a road detection function and a vehicle detection and tracking function. The road detection function makes use of three-dimensional point data, computed from stereo image data, to locate the road surface ahead of a host vehicle information gathered by the road detection function is used to guide the vehicle detection and tracking function, which provides lead motion data to a vehicular control system of the collision avoidance apparatus. Similar to the road detection function, stereo image data is used by the vehicle detection and tracking function to determine the depth of image scene features, thereby providing a robust means for identifying potential lead vehicles in a headway direction of the host vehicle.
Abstract:
The present disclosure is directed towards a compact, mobile apparatus for iris image acquisition, adapted to address effects of ocular dominance in the subject and to guide positioning of the subject's iris for the image acquisition. The apparatus may include a sensor for acquiring an iris image from a subject. A compact mirror may be oriented relative to a dominant eye of the subject, and sized to present an image of a single iris to the subject when the apparatus is positioned at a suitable distance for image acquisition. The mirror may assist the subject in positioning the iris for iris image acquisition. The mirror may be positioned between the sensor and the iris during iris image acquisition, and transmit a portion of light reflected off the iris to the sensor.
Abstract:
The present disclosure is directed towards a compact, mobile apparatus for iris image acquisition, adapted to address effects of ocular dominance in the subject and to guide positioning of the subject's iris for the image acquisition. The apparatus may include a sensor for acquiring an iris image from a subject. A compact mirror may be oriented relative to a dominant eye of the subject, and sized to present an image of a single iris to the subject when the apparatus is positioned at a suitable distance for image acquisition. The mirror may assist the subject in positioning the iris for iris image acquisition. The mirror may be positioned between the sensor and the iris during iris image acquisition, and transmit a portion of light reflected off the iris to the sensor.
Abstract:
The present invention provides a collision avoidance apparatus and method employing stereo vision applications for adaptive vehicular control The stereo vision applications are comprised of a road detection function and a vehicle detection and tracking function. The road detection function makes use of three-dimensional point data, computed from stereo image data, to locate the road surface ahead of a host vehicle information gathered by the road detection function is used to guide the vehicle detection and tracking function, which provides lead motion data to a vehicular control system of the collision avoidance apparatus. Similar to the road detection function, stereo image data is used by the vehicle detection and tracking function to determine the depth of image scene features, thereby providing a robust means for identifying potential lead vehicles in a headway direction of the host vehicle.