摘要:
Each configurable VQ terminal may be designated as an input terminal, an output terminal, or a bi-directional terminal. Accordingly, the integrated circuit (102) includes VO configuration modules (201). The I/O configuration modules (201) include an input/output designation mechanism (202), an input facilitation mechanism (203), an output facilitation mechanism (204), and an I/O change mechanism (205). The input/output designation mechanism (202) is configured to designate whether the configurable input/output terminal 200 is an input terminal, an output terminal, or a bi-directional terminal. The input facilitation mechanism (203) is configured to allow a signal provided to the configurable input/output terminal (200) to be received by the integrated circuit (102) if the configurable input/output terminal (200) is designated as an input terminal or a bi-directional terminal. The output facilitation mechanism (204) is configured to allow a signal provided by the integrated circuit (102) to be asserted on the configurable input/output terminal (200) if the configurable input/output terminal (200) is designated as an output terminal or a bi-direction terminal. The input/output change mechanism (205) is configured to change the input/output designation of the configurable input/output terminal if needed.
摘要:
Circuitry for monitoring the operation of an optoelectronic transceiver includes a sequence of interconnected signal processing circuits for processing an analog input signal and producing a digital result signal, where the analog signal represents one or more operating conditions of the optoelectronic transceiver. The sequence of signal processing circuits include gain circuitry for amplifying or attenuating the analog input signal by a gain value to produce a scaled analog signal, an analog to digital converter for converting the scaled analog signal into a first digital signal, and digital adjustment circuitry for digitally adjusting the first digital signal to produce the digital result signal. The digital adjustment circuitry includes shifting circuitry configured to shift an input digital signal in accordance with a shift value so as to produce a digital shifted signal. The digital result signal is stored in memory in predefined locations accessible by a host.
摘要:
An optical transceiver configured to perform calibration of digital diagnostics prior to providing the calibrated values to a host computing system (hereinafter referred to simply as a "host") that is communicatively coupled to the optical transceiver. The optical transceiver includes a sensor that measures an analog operational parameter signal such as temperature or supply voltage. Each analog signal is then converted to digital samples by analog to digital converter(s). A processor executes microcode that causes the optical transceiver to perform calibration on the various samples to compensate for predictable error introduced into the analog signal prior to or during the analog-to-digital conversion. The optical transceiver may then make the calibrated result accessible to the host.
摘要:
An optical transceiver (100a) (or optical transmitter or optical receiver) that has at least one processor (105), and a memory (106). The optical transceiver is capable of implementing any one of a number of protocols depending on how the optical transceiver is configured in microcode. In order to so configure the optical transceiver, the optical transceiver is provided with one of a particular set of microcode, each of the set of microcode being capable of implementing a different protocol when received into the memory and executed. To implement the protocol, the provided microcode is then executed by the optical transceiver. To implement a different protocol, different microcode may be provided to the optical transceiver and executed.
摘要:
An optical transceiver (or optical transmitter or optical receiver) that has at least one processor, and a memory. The optical transceiver is capable of implementing any one of a number of protocols depending on how the optical transceiver is configured in microcode. In order to so configure the optical transceiver, the optical transceiver is provided with one of a particular set of microcode, each of the set of microcode being capable of implementing a different protocol when received into the memory and executed. To implement the protocol, the provided microcode is then executed by the optical transceiver. To implement a different protocol, different microcode may be provided to the optical transceiver and executed.
摘要:
An optical transceiver configured to perform calibration of digital diagnostics prior to providing the calibrated values to a host computing system (hereinafter referred to simply as a "host") that is communicatively coupled to the optical transceiver. The optical transceiver includes a sensor that measures an analog operational parameter signal such as temperature or supply voltage. Each analog signal is then converted to digital samples by analog to digital converter(s). A processor executes microcode that causes the optical transceiver to perform calibration on the various samples to compensate for predictable error introduced into the analog signal prior to or during the analog-to-digital conversion. The optical transceiver may then make the calibrated result accessible to the host.
摘要:
An optical transceiver that custom logs information based on input from a host computing system (hereinafter referred to as a "host"). The optical transceiver receives input from the host concerning which operational information to log; the operational information may include statistical data about system operation, or measured parameters, or any other measurable system characteristic. The input from the host may also specify one or more storage locations corresponding to the identified operational information. If one or more storage locations are specified, the optical transceiver logs the information to the corresponding storage locations, which may be an on-transceiver persistent memory, the memory of the host or any other accessible logging location. Additionally, the input from the host may specify one or more actions to be performed when the identified information is logged. If one or more actions are specified, the optical transceiver performs the specified actions when the information is logged.
摘要:
An optical transceiver that custom logs information based on input from a host computing system (hereinafter referred to as a "host"). The optical transceiver receives input from the host concerning which operational information to log; the operational information may include statistical data about system operation, or measured parameters, or any other measurable system characteristic. The input from the host may also specify one or more storage locations corresponding to the identified operational information. If one or more storage locations are specified, the optical transceiver logs the information to the corresponding storage locations, which may be an on-transceiver persistent memory, the memory of the host or any other accessible logging location. Additionally, the input from the host may specify one or more actions to be performed when the identified information is logged. If one or more actions are specified, the optical transceiver performs the specified actions when the information is logged.
摘要:
An operational optical transceiver configured to initiate operation in loop back mode. The optical transceiver includes transmit and receive signal paths, a memory capable of having microcode written to it, and a configurable switch array that is used to connect and disconnect the two signal paths as appropriate for a desired loop back mode. The microcode is structured to cause the optical transceiver to control the configurable switch array. This allows for analysis and diagnostics of the signal data.
摘要:
Configuring chip I/O terminals such that they may be input, output, or bi-directional terminals. Furthermore, the I/O terminals may be configured with different signal sources if they are output or bi-directional terminals. In addition, the terminals may be configured to be inverted when operating in either direction. A mechanism is provided to change this configuration as needed, for example, to correspond to different pins on the package as appropriate given the package configuration and other implementation needs. This configurability allows for tremendous flexibility and independent between the chip on which the integrated circuit is embedded and the package.