Abstract:
Disclosed herein is a middle- or large-sized battery pack case in which a battery module having a plurality of stacked battery cells, which can be charged and discharged, is mounted, wherein the battery pack case is provided with a coolant inlet port and a coolant outlet port, which are disposed such that a coolant for cooling the battery cells can flow from one side to the other side of the battery module in the direction perpendicular to the stacking direction of the battery cells, and the battery pack case is further provided with beads formed in a concavo-convex shape for improving the structural stability of the battery pack case against an external force, the beads being constructed in a structure in which the beads do not disturb the flow of the coolant from the coolant inlet port along the advancing direction of a fluid in a flow space defined between the coolant inlet port and the battery module.
Abstract:
Disclosed is a shell-and-tube reactor or heat exchanger, which alternately comprises a doughnut-type baffle plate and a first disc-type baffle plate in order to increase heat transfer efficiency. In the reactor or heat exchanger, a second disc-type baffle plate is placed in an empty space inside of the doughnut-type baffle plate, and some tubes, through the inside of which a first object for heat transfer with a heat transfer medium, are present in a region inside of the doughnut-type baffle plate and outside of the second disc-type baffle plate. Also disclosed is a method for producing an oxide, comprising: using said reactor or heat exchanger, and causing a catalytic vapor-phase oxidation reaction in the tubes, through the inside of which the first object for heat transfer with the heat transfer medium is passed.
Abstract:
Disclosed herein is a middle- or large-sized battery pack case in which a battery module having a plurality of stacked battery cells, which can be charged and discharged, is mounted, wherein the battery pack case is provided with a coolant inlet port and a coolant outlet port, which are disposed such that a coolant for cooling the battery cells can flow from one side to the other side of the battery module in the direction perpendicular to the stacking direction of the battery cells, and the battery pack case is further provided with beads formed in a concavo-convex shape for improving the structural stability of the battery pack case against an external force, the beads being constructed in an outwardly-protruding structure to allow the coolant to be uniformly introduced into the battery module from the coolant inlet port in the advancing direction of a fluid in a flow space ("inlet duct") defined between the coolant inlet port and the battery module.
Abstract:
Disclosed herein is a middle- or large-sized battery pack case in which a battery module having a plurality of stacked battery cells, which can be charged and discharged, is mounted, wherein the battery pack case is provided with a coolant inlet port and a coolant outlet port, which are disposed such that a coolant for cooling the battery cells can flow from one side to the other side of the battery module in the direction perpendicular to the stacking direction of the battery cells, and the battery pack case is further provided with a flow space ('inlet duct') extending from the coolant inlet port to the battery module and another flow space (Outlet duct') extending from the battery module to the coolant outlet port, the inlet duct having a vertical sectional area less than that of the outlet duct.
Abstract:
Disclosed herein is a middle- or large-sized battery pack case in which a battery module having a plurality of stacked battery cells, which can be charged and discharged, is mounted, wherein the battery pack case is provided with a coolant inlet port and a coolant outlet port, which are disposed such that a coolant for cooling the battery cells can flow from one side to the other side of the battery module in the direction perpendicular to the stacking direction of the battery cells, the battery pack case is further provided with a flow space ('inlet duct') extending from the coolant inlet port to the battery module and another flow space ('outlet duct') extending from the battery module to the coolant outlet port, and one or more guide members are disposed in the inlet duct for guiding the flow of the coolant in the direction parallel to the stacking direction of the battery cells.
Abstract:
Disclosed herein is a middle- or large-sized battery pack case in which a battery module having a plurality of stacked battery cells, which can be charged and discharged, is mounted, wherein the battery pack case is provided with a coolant inlet port and a coolant outlet port, which are disposed such that a coolant for cooling the battery cells can flow from one side to the other side of the battery module in the direction perpendicular to the stacking direction of the battery cells, and the battery pack case is further provided with beads formed in a concavo-convex shape for improving the structural stability of the battery pack case against an external force, the beads being constructed in an outwardly-protruding structure to allow the coolant to be uniformly introduced into the battery module from the coolant inlet port in the advancing direction of a fluid in a flow space ("inlet duct") defined between the coolant inlet port and the battery module.
Abstract:
A treater oven for drying a prepreg includes: a pipe conduit configured such that the prepreg is able to pass therethrough; a the first structure connected to one side of the pipe conduit and supplying heated air to the pipe conduit; and the second structure connected to the other side of the pipe conduit and discharging the heated air from the pipe conduit. The first structure includes: an air supply portion connected to a heat exchanger and supplying the heated air; an air distribution discharge portion discharging the heated air supplied from the air supply portion through a pair of discharging outlets in both sides of the prepreg; and at least one perforated plate symmetrically disposed in air passageways of the air distribution discharge portion.
Abstract:
Disclosed herein is a middle- or large-sized battery pack case in which a battery module having a plurality of stacked battery cells, which can be charged and discharged, is mounted, wherein the battery pack case is provided with a coolant inlet port and a coolant outlet port, which are disposed such that a coolant for cooling the battery cells can flow from one side to the other side of the battery module in the direction perpendicular to the stacking direction of the battery cells, the battery pack case is further provided with a flow space ('inlet duct') extending from the coolant inlet port to the battery module and another flow space ('outlet duct') extending from the battery module to the coolant outlet port, and one or more guide members are disposed in the inlet duct for guiding the flow of the coolant in the direction parallel to the stacking direction of the battery cells.