Abstract:
An embodiment of a light powered transmitter (100) configured for broadcasting an electromagnetic control field to a region is provided. The transmitter comprises a housing (110) having a longitudinal axis. The housing comprises a photovoltaic cell configured to generate electrical power in response to light and a rechargeable power source configured to store at least a portion of the power generated by the photovoltaic cell. The housing also comprises an electromagnetic transmitter and a directional antenna. The directional antenna can be configured to broadcast an electromagnetic (e.g., radio-frequency) control field to a region. The directional antenna can be rotatably mounted in the housing such that the antenna can be rotated around the longitudinal axis. The housing can further comprise a transparent or translucent optical element (120) configured to receive the light and converge at least a portion of the light onto the photovoltaic cell.
Abstract:
An embodiment of a light powered transmitter (100) configured for broadcasting an electromagnetic control field to a region is provided. The transmitter comprises a housing (110) having a longitudinal axis. The housing comprises a photovoltaic cell configured to generate electrical power in response to light and a rechargeable power source configured to store at least a portion of the power generated by the photovoltaic cell. The housing also comprises an electromagnetic transmitter and a directional antenna. The directional antenna can be configured to broadcast an electromagnetic (e.g., radio-frequency) control field to a region. The directional antenna can be rotatably mounted in the housing such that the antenna can be rotated around the longitudinal axis. The housing can further comprise a transparent or translucent optical element (120) configured to receive the light and converge at least a portion of the light onto the photovoltaic cell.
Abstract:
A power generation system for wheeled objects comprises a generator mechanically coupled to one or more of the object's wheels to convert wheel rotational energy into electrical energy. The power generation system may comprise an electrical storage device configured to store the electrical power produced by the generator. Power from the generator and/or the electrical storage device can be used to provide power to other electrical systems in or on the object. In certain preferred embodiments, the electrical storage device comprises a bank of high-capacity capacitors connected in series. Some embodiments use a control circuit, for example, to regulate the charging and discharging of the capacitor bank and to provide suitable voltages for other systems. In some embodiments, the power generation system is configured to be disposed within the object's wheel.
Abstract:
A navigation system uses a dead reckoning method to estimate an object's present position relative to one or more prior positions. The dead reckoning method determines a change in position from the object's heading and speed during an elapsed time interval. In embodiments suitable for use with wheeled objects, the dead reckoning method determines the change in position by measuring the heading and the amount of wheel rotation. The heading is determined with reference to the Earth's magnetic field by disposing magnetic sensors in or in the object. Error correction and position reset procedures may be implemented to reduce accumulated navigational error. In preferred embodiments, some or all of the navigation system is disposed within a wheel of the object. The navigation system determines whether the object has exited a confinement area and activates an anti-theft system such as an alarm or wheel locking mechanism.
Abstract:
A navigation system uses a dead reckoning method to estimate an object's present position relative to one or more prior positions. In some embodiments, the dead reckoning method determines a change in position from the object's heading and speed during an elapsed time interval. In embodiments suitable for use with wheeled objects, the dead reckoning method determines the change in position by measuring the heading and the amount of wheel rotation. In a preferred embodiment, the heading is determined with reference to the Earth's magnetic field by disposing magnetic sensors in or on the object. Error correction and position reset procedures may be implemented to reduce accumulated navigational error. In preferred embodiments, some or all of the navigation system is disposed within a wheel of the object. In certain embodiments, the navigation system determines whether the object has exited a confinement area and activates an anti-theft system such as an alarm or a wheel locking mechanism. The navigation system can be configured to communicate with external markers and/or RF transmitters. In some embodiments, the markers comprise magnetic elements arranged to produce a magnetic signal indicating a direction or other suitable information.
Abstract:
A power generation system for wheeled objects comprises a generator mechanically coupled to one or more of the object's wheels to convert wheel rotational energy into electrical energy. The power generation system may comprise an electrical storage device configured to store the electrical power produced by the generator. Power from the generator and/or the electrical storage device can be used to provide power to other electrical systems in or on the object. In certain preferred embodiments, the electrical storage device comprises a bank of high-capacity capacitors connected in series. Some embodiments use a control circuit, for example, to regulate the charging and discharging of the capacitor bank and to provide suitable voltages for other systems. In some embodiments, the power generation system is configured to be disposed within the object's wheel.
Abstract:
A vehicle tracking system includes a wheel (32) containing sensor circuitry (88, 90, 92, 94, 96) capable of sensing various types of conditions, such as wheel rotation, wheel vibration caused by skidding, and specific electromagnetic and/or magnetic signals indicative of particular wheel locations. The sensor circuitry is coupled to an RF transceiver (82), which may but need not be included within the wheel. The wheel (32) may also include a brake mechanism (100). In one embodiment, the wheels (32) are placed on shopping carts (30) and are used to collect and monitor shopping cart status and location data via a wireless network. The collected data may be used for various purposes, such as locking the wheel of an exiting cart if the customer has not paid, estimating numbers of queued carts, stopping wheel skid events that occur during mechanized cart retrieval, store planning, and providing location-based messaging to customers.
Abstract:
Brake mechanisms for a wheel of non-motorized wheeled vehicle such as, e.g., a shopping cart, are described. In various embodiments, the brake mechanism can provide a variable amount of braking force or torque between zero and an amount sufficient to lock the wheel. In some embodiments, the brake mechanism includes a brake plate that is movable toward and away from a surface of the wheel hub along a direction parallel to the rotation axis of the wheel. The brake plate is configured not to rotate when the wheel and hub are rotating. Factional engagement between the brake plate and the surface of the wheel hub provides the braking force. The brake plate and/or the surface of the wheel hub can include engagement features such as, e.g., protrusions and slots, hi some embodiments, the brake mechanism fits entirely within the wheel.
Abstract:
A vehicle tracking system includes a wheel (32) containing sensor circuitry (88, 90, 92, 94, 96) capable of sensing various types of conditions, such as wheel rotation, wheel vibration caused by skidding, and specific electromagnetic and/or magnetic signals indicative of particular wheel locations. The sensor circuitry is coupled to an RF transceiver (82), which may but need not be included within the wheel. The wheel (32) may also include a brake mechanism (100). In one embodiment, the wheels (32) are placed on shopping carts (30) and are used to collect and monitor shopping cart status and location data via a wireless network. The collected data may be used for various purposes, such as locking the wheel of an exiting cart if the customer has not paid, estimating numbers of queued carts, stopping wheel skid events that occur during mechanized cart retrieval, store planning, and providing location-based messaging to customers.