摘要:
An alloy includes a composition, in weight percent, of aluminum from about 1.3% to about 1.8%, cobalt from about 1.5% to about 4.0%, chromium from about 18.0% to about 22.0%, iron from about 4.0% to about 10.0%, molybdenum from about 1.0% to about 3.0%, niobium from about 1.0% to about 2.5%, titanium from about 1.3% to about 1.8%, tungsten from about 0.8% to about 1.2%, carbon from about 0.01% to about 0.08%, and balance nickel and incidental impurities. The alloy has a stress rupture life at 700°C and 393.7 MPa (57.1 ksi) of at least 300 hours and a room temperature percent elongation of at least 15% after aging at 700°C for 1,000 hours.
摘要:
A high strength corrosion resistant tubing comprises about 35 to about 55% Ni, about 12 to about 25% Cr, about 0.5 to about 5% Mo, up to about 3% Cu, about 2.1 to about 4.5% Nb, about 0.5 to about 3% Ti, about 0.05 to about 1.0% Al, about 0.005 to about 0.04% C, balance Fe plus incidental impurities and deoxidizers. The composition also satisfies the equation: (Nb - 7.75 C) / (Al + Ti) = about 0.5 to about 9. A process for manufacturing the tubing includes: extruding the alloy to form a tubing; cold working the extruded tubing; annealing the cold worked tubing; and applying at least one age hardening step to the annealed tubing. Another process includes extruding the alloy at a temperature of about 2050°F or less; annealing the extruded tubing; and applying at least one age hardening step to the annealed tubing.
摘要:
A method of producing a nickel alloy clad steel pipe including: providing a hollow cylinder of nickel alloy cladding material and a hollow cylinder of steel, placing the hollow cylinder of the nickel alloy cladding material concentrically inside the hollow cylinder of steel or the hollow cylinder of the steel concentrically inside the hollow cylinder of nickel alloy cladding material to form a composite billet, heating the composite billet to 1121-1260°C, and extruding the composite billet, wherein the nickel alloy cladding material comprises 6.0-12.0 wt.% molybdenum, 19.0-27.0 wt.% chromium, 1.0 wt.% maximum tungsten, 0.6 wt.% maximum aluminum, 0.6 wt.% maximum titanium, 0.001-0.05 wt.% carbon, 0.001-0.035 wt.% nitrogen, 0.001-0.3 wt.% silicon, 1.0 wt.% maximum niobium, 2.5 wt.% maximum iron, 0.5 wt.% maximum manganese, 0.015 wt.% maximum phosphorous, 0.015 wt.% maximum sulfur, 1.0 wt.% maximum cobalt, and the balance nickel and may have a solidus temperature greater than 1312°C.
摘要:
A nickel (Ni), chromium (Cr), cobalt (Co), iron (Fe), molybdenum (Mo), manganese (Mn), aluminum (Al), titanium (Ti), niobium (Nb), silicon (Si) welding alloy, articles made therefrom for use in producing weldments and methods for producing these weldments. The welding alloy contains in % by weight about: 23.5 to 25.5% Cr, 15 to 22% Co, up to 3% Fe, up to 1% Mo, up to 1% Mn, 1.1 to 2.0% Al, 0.8 to 1.8% Ti, 0.8 to 2.2% Nb, 0.05 to 0.28% Si, up to 0.3% Ta, up to 0.3% W, 0.005 to 0.08% C, 0.001 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, up to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities. The welding alloy offers a combination of high temperature strength, ductility, stability, toughness and essentially defect-free weldability and weldments as to render the alloy range uniquely suitable for joining boiler tubing to the header pipe in supercritical, ultra-supercritical and advanced ultra-supercritical boiler applications where essentially defect-free joining is critical.
摘要:
A nickel, chromium, iron alloy and method for use in producing weld deposits and weldments formed therefrom. The alloy comprises, in weight percent, about 28.5 to 31.0% chromium; about 0 to 16% iron, preferably 7.0 to 10.5% iron, less than about 1.0% manganese, preferably 0.05 to 0.35% manganese; about 2.1 to 4.0% niobium plus tantalum, preferably 2.1 to 3.5% niobium plus tantalum, and more preferably 2.2 to 2.8% niobium plus tantalum; 0 to 7.0% molybdenum, preferably 1.0 to 6.5%, and more preferably 3.0 to 5.0% molybdenum; less than 0.50% silicon, preferably 0.05 to 0.30% silicon; 0.01 to 0.35% titanium; 0 to 0.25% aluminum; less than 1.0% copper; less than 1.0% tungsten; less than 0.5% cobalt; less than about 0.10% zirconium; less than about 0.01% sulfur; less than 0.01% boron, preferably less than 0.0015% boron, and more preferably less than 0.001% boron; less than 0.03% carbon; less than about 0.02% phosphorous; 0.002 to 0.015% magnesium plus calcium; and balance nickel and incidental impurities. The method includes the steps of forming a welding electrode from the above alloy composition and melting the electrode to form a weld deposit. A preferred weldment made from the alloy and method includes an alloy substrate in the form of a tubesheet of a nuclear reactor.
摘要:
A Ni-Fe-Cr-Mo alloy containing a small amount of Cu and correlated percentages of Nb, Ti and Al to develop a unique microstructure to produce 145 ksi minimum yield strength. The unique microstructure is obtained by special annealing and age hardening conditions, by virtue of which the alloy has an attractive combination of yield strength, impact strength, ductility, corrosion resistance, thermal stability and formability, and is especially suited for corrosive oil well applications that contain gaseous mixtures of carbon dioxide and hydrogen sulfide. The alloy comprises in weight percent the following: 0-15% Fe, 18-24% Cr, 3-9% Mo, 0.05 3.0% Cu, 3.6-6.5% Nb, 0.5-2.2% Ti, 0.05-1.0% Al, 0.005-0.040% C, balance Ni plus incidental impurities and a ratio of Nb/(Al+Ti) in the range of 2.5-7.5. To facilitate formability, the composition range of the alloy is balanced to be Laves phase free. According to the disclosed method of manufacture, the above alloy is provided and hot worked to a desired shape such as a bar or tube for corrosive oil and gas deep wells. The shaped alloy is heat treated by solution annealing, quenching or air cooling, followed by one or two aging steps to precipitate.y' and y" phases.
摘要:
A Ni-Fe-Cr alloy having high strength, ductility and corrosion resistance especially for use in deep-drilled, corrosive oil and gas well environments, as well as for marine environments. The alloy comprises in weight %: 35-55% Ni, 12-25% Cr, 0.5-5% Mo, up to 3% Cu, 2.1-4.5% Nb, 0.5-3% Ti, up to 0.7% Al, 0.005-0.04% C, balance Fe plus incidental impurities and deoxidizers. The alloy must also satisfy the ratio of (Nb - 7.75 C) / (Al + Ti) = 0.5-9 in order to obtain the desired high strength by the formation of γ' and γ" phases. The alloy has a minimum of 1% by weight γ" phase dispersed in its matrix for strength purposes and a total weight percent of γ' + γ" phases being between 10 and 30.
摘要:
A Ni-Cr-Fe alloy in the form of a weld deposit, a welding electrode and flux and a method of welding utilizing the Ni-Cr-Fe alloy. The alloy comprises in % by weight: 27-31 Cr, 6-11 Fe, 0.01-0.04 C, 1.5-4 Mn, 1-3 Nb, up to 3 Ta, 1-3 (Nb+Ta), 0.01-0.50 Ti, 0.0003-0.02 Zr, 0.0005-0.004 B,
摘要:
A furnace for reducing the temperature gradients in and cooling an elongate metal ingot comprises a furnace enclosure having an elongate vertical axis with heat insulating and temperature resistant walls, a plurality of electrical resistance heating elements being arranged on the interior of said walls in independently controllable heating zones spaced along the vertical axis of the furnace, and a controller for separately controlling each zone such that the heating rate of each zone increases moving from the lowermost zone to the uppermost zone.
摘要:
A welding filler metal includes, by weight percent: chromium of at least 28.0% and at most 31.5%; niobium of at least 0.60%; tantalum of at least 0.010%; molybdenum of at least 1.0% and at most 7.0%; carbon of at least 0.040% and at most 0.09%; manganese of at most 1.0%; balance nickel and inevitable impurities, wherein the sum of niobium and tantalum is at least 2.2% and at most 4.0%. A welding filler metal consumable is made from the welding filler metal. A welding deposit is formed from the welding filler metal consumable. A weldment is formed using the welding filler metal consumable.