Abstract:
One embodiment of the present invention, file transfers are performed in a wireless communication network between a wireless transmit/receive unit (WTRU) and a location external to the WTRU for purposes of utilizing the data under predetermined conditions. In another embodiment, file transfer is performed by determining conditions for file transfer using the WTRU. The file transfer takes place subject to the determined conditions, and using the WTRU to automatically request the file transfer in response to the existence of the determined conditions.
Abstract:
A wireless transmit/receive unit (WTRU 250, Figure 1) for processing code division multiple access (CDMA) signals. The WTRU includes modem host (300) and a high speed downlink packet access (HSDPA) co-processor (400) , which communicate over a plurality of customizable interfaces. The modem host operates in accordance with third generation partnership project (3GPP) Release 4 (R4) standards, and the HSDPA co-processor enhances the wireless communication capabilities of the WTRU as a whole such that the WTRU operates in accordance with 3GPP Release 5 (S3) standards.
Abstract:
A spread spectrum method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless code division multiple access (CDMA) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless CDMA communication system includes a transmitter which steganographically embeds digital information in a CDMA communication signal and wirelessly transmits the CDMA communication signal. The system further includes a receiver which receives the CDMA communication signal and extracts the steganographically embedded digital information from the received CDMA communication signal.
Abstract:
At least one user data stream is layer 2/3 processed [Fig.3. ref. 24], physical layer processed [Fig. 3, ref. 26] and radio frequency processed [Fig. 3, ref. 28]. A watermark/signature is embedded [Fig. 3, ref. 30] at least one of layer 2/3, [Fig. 3, ref. 24] physical layer [Fig. 3, ref. 24] or radio frequency [Fig. 3, ref.28], producing an embedded wireless communication. The embedded wireless communication is wirelessly transferred [Fig. 3, ref. 36]. The embedded wireless communication is received [Fig. 3, ref. 34] and the watermark/signature is extracted [Fig. 3, ref. 34] from the embedded wireless communication.
Abstract:
A method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless orthogonal frequency division multiplexing (OFDM) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless OFDM communication system includes a transmitter which steganographically embeds digital information in an OFDM communication signal and wirelessly transmits the OFDM communication signal. The system further includes a receiver which receives the OFDM communication signal and extracts the steganographically embedded digital information from the received OFDM communication signal.
Abstract:
At least one user data stream is layer 2/3 processed, physical layer processed and radio frequency processed. A watermark/signature is embedded at at least one of layer 2/3, physical layer or radio frequency, producing an embedded wireless communication. The embedded wireless communication is wirelessly transferred. The embedded wireless communication is received and the watermark/signature is extracted from the embedded wireless communication.
Abstract:
A method for adjusting the operating parameters of a wireless device for use in a wireless communication network begins by entering and storing situation settings. When a communication is received at the network for the wireless device, the presence of the wireless device is determined. The situation settings are applied based upon the presence of the wireless device. The wireless device is informed of the communication via the applied situation settings.
Abstract:
A method for adjusting the operating parameters of a wireless device for use in a wireless communication network begins by entering and storing situation settings. When a communication is received at the network for the wireless device, the presence of the wireless device is determined. The situation settings are applied based upon the presence of the wireless device. The wireless device is informed of the communication via the applied situation settings.
Abstract:
A unified dual-mode global system for mobile communication (GSM)/universal mobile telecommunication systems (UMTS) clock and a transceiver employing the unified GSM/UMTS clock are disclosed. A reference clock generates a reference clock signal and a local oscillator (LO) generates a LO signal based on the reference clock signal. A frequency divider selectively generates either a GSM clock signal or a UMTS clock signal by converting a frequency of the LO signal by a predetermined factor. Both the GSM clock signal and the UMTS clock signal are generated based on the common reference clock signal. The reference clock signal frequency may be a GSM fundamental frequency or a UMTS fundamental frequency. An interpolator and/or a decimator may be used for matching frequencies of UMTS baseband signal and the UMTS clock signal or frequencies of GSM baseband signal and the GSM clock signal.
Abstract:
One embodiment of the present invention, file transfers are performed in a wireless communication network between a wireless transmit/receive unit (WTRU) and a location external to the WTRU for purposes of utilizing the data under predetermined conditions. In another embodiment, file transfer is performed by determining conditions for file transfer using the WTRU. The file transfer takes place subject to the determined conditions, and using the WTRU to automatically request the file transfer in response to the existence of the determined conditions.