Abstract:
A satellite communications system can comprise at least one that satellite, an antenna structure deployed on the at least one satellite, and radio hardware coupled to the antenna structure that can provide for transmitting a first channel simultaneously with a second channel, wherein the first channel is transmitted using directive beams and the second channel is transmitted using a wide beam and wherein the directive beams are for data communication signals and the wide beam is for navigation signals.
Abstract:
The invention discloses a method and a base station for phase compensation in beamforming in a multi-antenna Time Division Duplex (TDD) communication network. In a first transmission mode, e.g. TM4 or TM8, the base station estimates a first phase shift between a first antenna port and a reference antenna port in uplink based on a measurement of a first Sounding Reference Signal (SRS). Then the base station estimates in the first transmission mode a second phase shift between the first antenna port and the reference antenna port in downlink based on a Channel State Information (CSI) feedback from a User Equipment (UE), and calculates a parameter indicative of a difference between the first phase shift and the second phase shift. In a second transmission mode, e.g. TM7 or TM8, the base station estimates a third phase shift between the first antenna port and the reference antenna port in uplink based on a measurement of a second SRS, and calculates in the second transmission mode, a fourth phase shift between the first antenna port and the reference antenna port in downlink as a difference between the third phase shift and the parameter. The base station then compensates in the second transmission mode, the phase of input signal on the first antenna port by the fourth phase shift for beamforming.
Abstract:
To facilitate ranging between mobile terminals and a base station in a wireless communication network employing orthogonal frequency division multiplexing (OFDM) for uplink data communications, a periodic ranging channel for use by a mobile terminal is defined. The channel specifies a plurality N of blocks of sub-carrier frequencies of an OFDM frequency band which are non-contiguous within the OFDM frequency band. The channel also specifies a time slot within an OFDM subframe which spans one or more OFDM symbol periods. A ranging transmission is periodically sent as a spread signal across the specified N blocks of sub-carrier frequencies within the specified time slot. The duration of the ranging transmission may be less than a duration of the OFDM subframe. A notional grid of tiles representing time and frequency resources associated with the subframe may facilitate channel definition. A similar approach may be used to define an initial access channel for initial access transmissions.
Abstract:
A method for timing and frequency synchronization in a wireless system is provided. The method comprises the steps of receiving a burst of symbols, selecting a subset of the burst of symbols, iteratively adjusting the subset of the burst of symbols by a plurality of timing offsets and calculating, for each timing offset, a first performance metric corresponding to the adjusted subset. The method further comprises the steps of determining one of the plurality of timing offsets to be a preferred timing offset based upon the first performance metric thereof, iteratively rotating the subset of the burst of symbols by a plurality of frequency offsets and calculating, for each frequency offset, a second performance metric corresponding to the rotated subset, and determining one of the plurality of frequency offsets to be a preferred frequency offset based upon the second performance metric thereof.
Abstract:
A technique for performing a random access procedure in a fast moving mobile device (100) in context with accessing a radio base station (101 ) is described. A method embodiment of the technique comprises tuning a receiver (106) of the mobile device (100) to an expected frequency of a pilot signal (136) provided by the base station (101 ); determining, based on an output signal of the receiver (140), a feedback signal (142) for locking the receiver (106) to a receive frequency of the pilot signal (136); providing the feedback signal (148) to a transmitter (108) of the mobile device (100); and adjusting a transmission frequency of a random access signal (154) according to a frequency offset between the expected frequency and the receive frequency of the pilot signal (136) indicated by the feedback signal (148).
Abstract:
Apparatus, and an associated method, for facilitating communication of communication data upon a communication channel susceptible to distortion. Both diversity techniques and spatial multiplexing techniques are utilized to compensate for the distortion introduced upon the data during its communication. Separate parts of the communication data are mapped pursuant data are mapped pursuant to separate mapping schemes. The mapping schemes are selected to exhibit different properties. When the communication data is communicated upon the communication channel and delivered to a receiving station, a decoder decodes the data to recover the informational content of the data.
Abstract:
A method and system for achieving timeframe alignment between a Centralized Base Station Controller (CBSC) (106) and a Base Transceiver Site (BTS) (102) in a network is disclosed. The BTS returns a Forward Sequence Number (FSN) contained in a forward frame and a Packet Arrival Time Error (PATE) to the CBSC. The CBSC computes a Round Trip Time (RTT), using the FSN. The CBSC also computes a forward Coordinated Universal Time (UTC), using the RTT and the PATE. Thereafter, a CBSC transmission time is adjusted to align with the BTS, based on the adjusted UTC.
Abstract:
A wireless terminal determines the position of a moving base station and determines timing and/or frequency corrections. A wireless terminal determines its relative position with respect to the base station and determines a timing adjustment correction. The wireless terminal applies the determined timing correction to control uplink signaling timing and achieve synchronization at the base station's receiver. The wireless terminal determines its relative velocity with respect to the moving base station and determines a Doppler shift adjustment which it adds to the uplink carrier frequency or to its baseband signal. Base station position is determined from the current time and stored information correlating the base station position with time, e.g., for a geo-synchronous satellite. Base station position information, e.g., a GPS derived base station position fix, is determined from downlink airlink broadcast information, e.g., for an aircraft base station. Wireless terminals may be mobile and include a GPS receiver for wireless terminal position determination.
Abstract:
At least one embodiment of the invention provides an automated frequency offset compensation method, system, and apparatus that improves throughput between one or more wireless communication devices by compensating for frequency offsets caused by a Doppler effect. In particular, one implementation estimates the frequency offset and uses this to compensate the carrier signal power to interference power ratio (C/I) when the transmitting and receiving devices are moving relative to each other such that a Doppler effect creates a frequency offset in the perceived frequency of the received carrier signal.