Abstract:
A sintered electrolyte sheet comprising: a body of no more than 45 μm thick and laser machined features with at least one edge surface having at least 10% ablation. A method of micromachining the electrolyte sheet includes the steps of: (i) supporting a sintered electrolyte sheet; (ii) micromachining said sheet with a laser, wherein said laser has a wavelength of less than 2 μm, fluence of less than 200 Joules/cm2, repetition rate (RR) of between 30 Hz and 1 MHz, and cutting speed of preferably over 30 mm/sec.
Abstract:
A method of replacing a fuel cell packet module in a fuel cell stack, said method comprising: (i) powering down the fuel cell stack; (ii) electrically disconnecting the fuel cell packet module from external power load, (iii) mechanically disconnecting the fuel cell packet module from the fuel cell stack; and (iv) removing the fuel cell packet module from the stack.
Abstract:
A bus bar for an electrolyte sheet is provided that includes a bus strip (37) of electrically conductive material in contact with a side edge of the cell or cells in the electrolyte sheet, wherein the amount of material in shoulder portions (39, 45) of the bus strip (37) decreases as the strip approaches end portions of the cell edge to reduce stress. Preferably, such material reduction is accomplished by tapering the shoulder portions (39, 45) of the bus strip (37). The tapered shape of the shoulders reduces the amount of electrical conductor needed to form the bus bar. The stress reducing bus bar also includes a lead (41a, 41b) which is orthogonally oriented with respect to the longitudinal axis of the side edge of the cell. The tapered shape of the shoulder portions of the bus strip, in combination with the orthogonally oriented lead, reduces stresses that would otherwise occur between the bus bar and the electrolyte sheet as a result of differences in the thermal coefficient of expansion. The specific shape of the taper in the shoulder portions is selected such that I 2 R losses are substantially minimized along the longitudinal axis of the bus strip.
Abstract:
A stress reducing mounting for an electrolyte sheet assembly in a solid electrolyte fuel cell includes a support frame or manifold that supports a peripheral portion of the sheet assembly, a seal that affixes an edge to the frame or manifold, and a stress reducer disposed around the peripheral portion of the electrolyte sheet and the frame or manifold that reduces tensile stress in the peripheral portion of the electrolyte sheet when the peripheral portion is bent by pressure differentials or thermal differential expansion and mounting reduces cracking in the electrolyte sheet at the peripheral portions due to tensile forces. The stress reducer is either a convex curved surface on the frame or manifold that makes area contact with the peripheral portion when it bends or a stiffening structure on the sheet peripheral portion that renders the ceramic sheet material forming the peripheral portion more resistant to bending.
Abstract:
An electrolyte sheet comprises a substantially non-porous body and has at least one stress-relief area on at least a portion of the electrolyte sheet. The stress-relief area has a surface with a plurality of smoothly domed cells.
Abstract:
According to one aspect of the invention a fuel cell device comprises: a plurality of fuel cells, each of the plurality of fuel cells having an active area, wherein at least two of the plurality of fuel cells have differently sized active area, such that ratio of the active areas of these two fuel cells is at least 1.1:1.
Abstract:
An electrode structure for a low voltage, high current electrical production device includes a charge transfer member (612). An electrically conductive member (605) having a non-uniform resistance is disposed on the charge transfer member 612 for optimizing current coupling.
Abstract:
A system (100) and method including a radially non-uniformly plugged flow-through honeycomb substrate (200) positioned upstream of a wall-flow particulate filter (300) for controlled thermal regeneration of the wall-flow particulate filter. The flow-through honeycomb substrate (200) has an inlet face (204) and an outlet face (206) and a plurality of longitudinal walls extending between the inlet face and the outlet face. The longitudinal walls define a plurality of parallel channels (208) extending between the inlet face and the outlet face. The honeycomb substrate has a flow-through region including a first portion (208a) of the parallel channels and a flow-control region including a second portion (208b) of the parallel channels. The first portion of the parallel channels includes unplugged channels and the second portion of the parallel channels includes plugged channels. The flow-control region adjusts flow distribution through the substrate such that flow having a first flow distribution received at the inlet face emerges at the outlet face with a second flow distribution, different than the first flow distribution.
Abstract:
A solid oxide fuel cell (10) comprising a thin ceramic electrolyte sheet (50) having an increased street width (22) is disclosed. Also disclosed are solid oxide fuel cells comprising: a substantially flat ceramic electrolyte sheet (50), a substantially flat ceramic electrolyte sheet having a seal area (34) of greater thickness than the active area of the electrolyte sheet, a ceramic electrolyte sheet (50) that overhangs (36) the seal area (34), a ceramic electrolyte sheet and at least one substantially flat border material, and a border material having a non-linear edge. Methods of making a solid oxide fuel cell in accordance with the disclosed embodiments are also disclosed. Also disclosed are methods of making a solid oxide fuel cell (10) wherein the seal (40) has a uniform thickness, wherein the seal (40) is heated to remove a volatile component prior to sealing, and' wherein the distance between the frame (60) and the ceramic electrolyte sheet (50) of the device (10) is constant.
Abstract:
A system and method including a radially non-uniformly plugged flow-through honeycomb substrate positioned upstream of a wall-flow particulate filter for controlled thermal regeneration of the wall-flow particulate filter. The flow-through honeycomb substrate has an inlet face and an outlet face and a plurality of longitudinal walls extending between the inlet face and the outlet face. The longitudinal walls define a plurality of parallel channels extending between the inlet face and the outlet face. The honeycomb substrate has a flow-through region including a first portion of the parallel channels and a flow-control region including a second portion of the parallel channels. The first portion of the parallel channels includes unplugged channels and the second portion of the parallel channels includes plugged channels. The flow-control region adjusts flow distribution through the substrate such that flow having a first flow distribution received at the inlet face emerges at the outlet face with a second flow distribution, different than the first flow distribution.