Abstract:
For correcting differential phase image data 52, differential phase image data 52 acquired with radiation at different energy levels is received, wherein the differential phase image data 52 comprises pixels 60, each pixel 60 having a phase gradient value 62a, 62b, 62c for each energy level. After that an energy dependent behavior of phase gradient values 62a, 62b, 62c of a pixel 60 is determined and a corrected phase gradient value 68 for the pixel 60 is determined from the phase gradient values 62a, 62b, 62c of the pixel 60 and a model for the energy dependence of the phase gradient values 62a, 62b, 62c.
Abstract:
The invention relates to an imaging system for imaging an object. Projection data of the object are acquired by using a radiation source emitting primary radiation (14) from a primary focal spot (15) and unwanted secondary radiation (16) from secondary focal spots (17). A first image of the object is reconstructed from the acquired projection data, a forward projection of the secondary radiation through the first image is simulated for generating secondary projection data, and a second image is generated based on the acquired projection data and the secondary projection data. Since the secondary projection data, which can generally cause image artifacts, are determined, the reconstruction unit can consider these unwanted secondary projection data while reconstructing the second image, in order to reduce the influence of the secondary projection data on the reconstructed second image, thereby improving the image quality.
Abstract:
The invention relates to a computed tomography apparatus for imaging an object. The computed tomography apparatus comprises a radiation source (2) for generating modulated radiation (4) traversing the object and a detector (6) for generating detection values depending on the radiation (4) after having traversed the object, while the radiation source (2) and the object are moved relative to each other. A weight providing unit (14) provides modulation weights for weighting the detection values depending on the modulation of the radiation (4) and a reconstruction unit (15) reconstructs an image of the object, wherein the detection values are weighted based on the provided modulation weights and an image of the object is reconstructed from the weighted detection values. This can allow to optimize the dose application to the object by modulating the radiation accordingly, wherein the reconstructed images still have a high quality.
Abstract:
X-raydevices for Phase Contrast Imaging (PCI) are often built up with the help ofgratings. For large field-of-views (FOV), production cost and complexity of these gratings could increase significantly as they need to have a focused geometry. Instead of a pure PCI with a large FOV, this invention suggests to combine a traditional absorption X-rayimaging system with large-FOV with an insertable low-cost PCI systemwith small-FOV, The invention supports the user to direct the PCI systemwith reduced FOV to a region that he regards as most interesting for performing a PCI scan thus eliminating X-raydose exposure for scanning regions not interesting fora radiologist. The PCI scan may be generated on the basis of local tomography.
Abstract:
The invention relates to a computed tomography apparatus comprising a radiation source (2) and a detector (6) for generating detection values depending on a conical radiation beam (4). A weight providing unit (12) provides,for combinations of voxels of an image and detection values,weights for weighting the detection values,and a beam shaper shapes the conical radiation beam (4) such that for at least a part of the detection values the inverse of the variance of a respective detection value is positively correlated with an average of the weights corresponding to the combinations of the voxels, which correspond to the respective detection value, and the respective detection value. This shaping of the conical radiation beam improves the signal-to-noise ratio of the weighted detection values.
Abstract:
A method includes creating a second set of projection data that includes substantially only selected structure of interest based on a first set of projection data that includes the selected structure of interest and other structure. Another method includes generating a second plurality of sliding window slices for a last slice of a first plurality of slices, selecting a second sliding window slice from the second plurality of sliding window slices based on the last slice of the first plurality of slices, and generating a second plurality of slices, including a first slice and a last slice, from a range of projection data around projection data corresponding to the last slice of the first plurality of slices.
Abstract:
The invention relates to an image generation system for generating an image of a region of interest. The image generation system comprises a measured data providing unit for providing measured data of the region of interest, a reconstruction unit (12) for reconstructing a first and a second image of the region of interest from the measured data using a first and a second reconstruction method, a noise determination unit (13) for determining first and second noise values for first and second image elements of the first and second image, and an image element combining unit (14) for combining corresponding first and second image elements into combined image elements forming a combined image based on the first and second noise values. By combining corresponding image elements of two differently reconstructed images based on determined noise values, a combined image of a region of interest can be generated with an improved quality.
Abstract:
When subjecting a patient to an MRI scan, noise generated by gradient coils in an MRI device is beautified by playing a complementary musical piece that matches the gradient coil noise in one or both of tempo and musical key. Complementary musical pieces (e.g., songs, tunes, melodies, etc.) are pre-generated for specific gradient coil sequences. Upon selection of one or more sequences to be executed during an MR scan, complementary musical pieces for the selected sequence(s) are identified and played back to a patient in the bore of the MRI device during the scan to alleviate patient stress. Tempo and/or musical key of the complementary musical pieces is adjustable (a priori or in real time) to synchronize the complementary musical piece(s) to a specific gradient sequence both rhythmically and harmonically.
Abstract:
The invention relates to a method and a device for generating phase contrast X-rayimages of an object (1). The device comprises an X-raysource (10) that may for example be realized by a spatiallyextended emitter (11) behind a grating (G 0 ). A diffractive optical element (DOE), for example a phase grating(G 1 ), generates an interference pattern(I) from the X-radiation that has passed the object (1), and a spectrally resolving X-ray detector (30) is used to measure this interference pattern behind the DOE. Using the information obtained for different wavelengths/energies of X-radiation, the phase shift induced by the object can be reconstructed.
Abstract:
The invention relates to an apparatus for determining a high density region in an image, wherein the apparatus comprises a provision unit (1, 2, 6, 7, 8) for providing projection data for reconstructing the image. The apparatus comprises further a high density shadow determination unit (12) for determining a high density shadow in the projection data and a backprojection unit (13) for backprojecting the determined high density shadow resulting in a high density image showing the high density region. The inventions relates further to a corresponding method and computer program for determining a high density region in an image.