Abstract:
A system and method of face recognition is provided. The method includes capturing an image including a face and registering features of the image to fit with a model face to generate a registered model face. The registered model face is then transformed to a desired orientation to generate a transformed model face. The transformed model face is then compared against a plurality of stored images to identify a number of likely candidates for the face. In addition, the face recognition process may be performed passively.
Abstract:
A method for re-identifying an image is provided. The method comprises obtaining a plurality of images and generating a correspondence map between the plurality of images. The method further comprises defining a plurality of region signatures for one or more regions comprising the plurality of images and comparing the plurality of images based on the correspondence map and the plurality of region signatures to perform image re-identification.
Abstract:
A system and method of face recognition is provided. The method includes capturing an image including a face and registering features of the image to fit with a model face to generate a registered model face. The registered model face is then transformed to a desired orientation to generate a transformed model face. The transformed model face is then compared against a plurality of stored images to identify a number of likely candidates for the face. In addition, the face recognition process may be performed passively.
Abstract:
A system and method, the method including calibrating an image capturing system; capturing a video sequence with the image capturing system; detecting a subject of interest in the video sequence; tracking the subject over a period of time; and extracting data associated with a motion of the subject based on the tracking.
Abstract:
Embodiments of the invention include a system and a method for determining whether a person is carrying concealed contraband, such as an improvised explosives device or other weapon. The system includes a people tracking video subsystem, a people tracking decisioning subsystem, a concealed contraband detection aiming subsystem, and a concealed contraband detection decisioning subsystem.
Abstract:
Embodiments of the invention include a system and a method for determining whether a person is carrying concealed contraband, such as an improvised explosives device or other weapon. The system includes a people tracking video subsystem, a people tracking decisioning subsystem, a concealed contraband detection aiming subsystem, and a concealed contraband detection decisioning subsystem.
Abstract:
Embodiments include an intelligent railyard monitoring system including a plurality of video devices, a device for interpreting captured images in operable communication with the plurality of video devices, a device controller in operable communication with the device for interpreting captured images wherein the system is capable of analyzing multiple video streams from the video devices to detect, locate, and track one or more targets and wherein the device for interpreting captured images includes a computing device.
Abstract:
A method for re-identifying an image is provided. The method comprises obtaining a plurality of images and generating a correspondence map between the plurality of images. The method further comprises defining a plurality of region signatures for one or more regions comprising the plurality of images and comparing the plurality of images based on the correspondence map and the plurality of region signatures to perform image re-identification.
Abstract:
A method for calibrating a projective camera is provided. The method includes acquiring information by detecting at least one object on a substantially flat ground plane within a field of view. A projective camera calibration is performed. A measurement uncertainty is considered to yield a plurality of camera parameters from the projective camera calibration.
Abstract:
A video storyboard delivery system is disclosed. The system receives, from a playback client executed on a user device, a request for a video including one or more user device parameters. The system obtains a storyboard manifest including information defining a storyboard associated with the video, wherein the information includes a plurality of storyboard resolution levels. Using the one or more user device parameters, a selection is made of one of the plurality of storyboard resolution levels from the storyboard manifest. The storyboard at the selected resolution level is delivered to the playback client.