Abstract:
A process and method for making a superior lubricant or distillate fuel component by the oligomerization/alkylation of a mixture comprising olefins and isoparaffins to produce an alkylated ("capped") olefin oligomer using an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Brönsted acid.
Abstract:
A process and method for making a superior lubricant or distillate fuel component by the oligomerization of a mixture comprising olefins to form an oligomer and the alkylation of the oligomer with isoparaffins to produce an alkylated ("capped") olefin oligomer preferably using an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Bronsted acid.
Abstract:
A process and method for making a superior lubricant or distillate fuel component by the oligomerization/alkylation of a mixture comprising olefins and isoparaffins to produce an alkylated ("capped") olefin oligomer using an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Brönsted acid.
Abstract:
A process for making and a composition of a superior lubricant or lubricant component by the oligomerization of a mixture comprising olefins and isoparaffins to produce an alkylated ("capped") olefin oligomer having a very high VI and a low cloud point. The process preferably uses an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Brönsted acid.
Abstract:
A process and method for making a superior lubricant or distillate fuel component by the oligomerization of a mixture comprising olefins to form an oligomer and the alkylation of the oligomer with isoparaffins to produce an alkylated ("capped") olefin oligomer preferably using an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Bronsted acid.
Abstract:
A process for making and a composition of a superior lubricant or lubricant component by the oligomerization of a mixture comprising olefins and isoparaffins to produce an alkylated ("capped") olefin oligomer having a very high VI and a low cloud point. The process preferably uses an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Brönsted acid.
Abstract:
A composition of lubricating base oil having a weight percent of all molecules with at least one aromatic function less than 0.30, a weight percent of all molecules with at least one cycloparaffin function greater than 10, and a ratio of weight percent of molecules with monocycloparaffins to weight percent of molecules with multicycloparaffins greater than 15.
Abstract:
A process for manufacturing a finished lubricant by: a) performing Fischer-Tropsch synthesis on syngas to provide a product stream; b) isolating from said product stream a substantially paraffinic wax feed having less than about 30 ppm total nitrogen and sulfur, and less than about 1 wt % oxygen; c) dewaxing said feed by hydroisomerization dewaxing using a shape selective intermediate pore size molecular sieve comprising a noble metal hydrogenation component, wherein the hydroisomerization temperature is between about 600 °F (315 °C) and about 750 °F (399 °C), to produce an isomerized oil; and d) hydrofinishing said isomerized oil, whereby a lubricating base oil is produced having specific desired properties; and e) blending the lubricating base oil with at least one lubricant additive.
Abstract:
An integrated process for lowering the pour point of Fischer-Tropsch derived wax which comprises (a) collecting separately from a Fischer-Tropsch unit a Fischer-Tropsch wax and a Fischer-Tropsch condensate; (b) pyrolyzing the Fischer-Tropsch wax in a thermal cracking zone under thermal cracking conditions pre-selected to achieve a cracking conversion of the paraffins molecules present in the Fischer-Tropsch wax of at least 10 percent; (c) recovering from the thermal cracking zone a low pour point Fischer-Tropsch derived wax and a Fischer-Tropsch derived overhead product; and (d) mixing at least a portion of the Fischer-Tropsch derived overhead product recovered in step (c) and at least a portion of the Fischer-Tropsch condensate collected in step (a) with at least a portion of the low pour point Fischer-Tropsch derived wax in the proper proportion to produce a Fischer-Tropsch derived waxy product having a pour point equal to or below about 40 degrees C.