Abstract:
The present invention relates to a method for producing a tungsten oxide photocatalyst having titanium oxide and copper ion supported thereon, comprising dissolving urea in a solution in which copper-ion supporting tungsten oxide particles are uniformly dispersed in a titanium oxide sol, thermally decomposing the urea to thereby allow the titanium oxide to precipitate on the surface of copper ion-supporting tungsten oxide and to be supported thereon; and a tungsten oxide photocatalyst modified by both titanium oxide and copper ion obtained by the method, wherein the rate of change of diffuse reflectivity (at wavelength of 700 nm) is less than 3% before and after the irradiation of ultraviolet and the titanium oxide is supported on the tungsten oxide in an island shape of 1 to 100 nm in size. The tungsten oxide photocatalyst having titanium oxide and copper ion supported thereon of the present invention exhibits high catalyst activity under visible light irradiation.
Abstract:
An ammoxidation catalyst is provided, characterized in that a crystalline composite oxide containing vanadium and chromium and having a specific powder X-ray diffraction peak pattern is used as the catalyst component in practicing gas phase ammoxidation of an organic compound having an alkyl group. Also provided are a method for producing a nitrile compound using the catalyst and a method for evaluating the performance of a gas phase ammoxidation catalyst using powder X-ray diffraction.
Abstract:
The present invention relates to a photocatalytic material having a visible light activity which includes a tungsten-doped titanium oxide or a tungsten/gallium-codoped titanium oxide, and a divalent copper salt and/or a trivalent iron salt supported on a surface of the doped or codoped titanium oxide, and a process for producing the photocatalytic material.
Abstract:
A highly efficient and effective activating method by which the electrochemical activity of a hydrogen storage alloy is improved and a hydrogen storage alloy electrode having an excellent initial internal pressure characteristic, low-temperature discharge characteristic, high-rate discharge characteristic, and cycle characteristic and manufactured by using the activating method. A process for producing a hydrogen storage alloy electrode includes an alloy activating step in which a hydrogen storage alloy is dipped in strong acidic solution containing metallic ions and the pH value rise of the solution is accelerated by adding an alkali to the solution.
Abstract:
There is provided a method and an apparatus for producing metal oxide particles, which produce metal oxide particles having a high photocatalytic activity with high yield. The method for producing metal oxide particles of the invention is characterized by including combining, in a reaction tube, a preheated metal chloride-containing gas with a preheated first gas which does not contain the metal chloride at a first junction to obtain a first combined gas, and combining the first combined gas with a preheated second gas which does not contain the metal chloride, at a second junction which is further downstream of the first junction, to obtain a second combined gas, wherein at least one of the metal chloride-containing gas and the first gas contains oxygen, and wherein the preheated metal chloride-containing gas is further heated in a region between the first junction and the second junction (referred to as first reaction zone), by combining the first gas with the metal chloride-containing gas at the first junction while setting the preheat temperature of the first gas at a temperature equal to or higher than the preheat temperature of the metal chloride-containing gas, and the first combined gas is further heated in a region downstream of the second junction by combining the second gas with the first combined gas at the second junction while setting the preheat temperature of the second gas at a temperature equal to or higher than the temperature of the first combined gas.
Abstract:
The present invention relates to a copper ion-modified titanium oxide including titanium oxide whose surface is modified with a copper ion, and containing a brookite-type crystal; a process for producing a copper ion-modified titanium oxide, including a hydrolysis step of subjecting a titanium compound capable of producing titanium oxide to hydrolysis in a reaction solution, and a surface modification step of mixing a solution obtained after the hydrolysis with an aqueous solution containing a copper ion to modify a surface of the titanium oxide therewith; and a photocatalyst containing the copper ion-modified titanium oxide in an amount of 70% by mass or more.
Abstract:
The present invention relates to a copper ion-modified titanium oxide including titanium oxide whose surface is modified with a copper ion, and containing a brookite-type crystal; a process for producing a copper ion-modified titanium oxide, including a hydrolysis step of subjecting a titanium compound capable of producing titanium oxide to hydrolysis in a reaction solution, and a surface modification step of mixing a solution obtained after the hydrolysis with an aqueous solution containing a copper ion to modify a surface of the titanium oxide therewith; and a photocatalyst containing the copper ion-modified titanium oxide in an amount of 70% by mass or more.
Abstract:
There is provided a method and an apparatus for producing metal oxide particles, which produce metal oxide particles having a high photocatalytic activity with high yield. The method for producing metal oxide particles of the invention is characterized by including combining, in a reaction tube, a preheated metal chloride-containing gas with a preheated first gas which does not contain the metal chloride at a first junction to obtain a first combined gas, and combining the first combined gas with a preheated second gas which does not contain the metal chloride, at a second junction which is further downstream of the first junction, to obtain a second combined gas, wherein at least one of the metal chloride-containing gas and the first gas contains oxygen, and wherein the preheated metal chloride-containing gas is further heated in a region between the first junction and the second junction (referred to as first reaction zone), by combining the first gas with the metal chloride-containing gas at the first junction while setting the preheat temperature of the first gas at a temperature equal to or higher than the preheat temperature of the metal chloride-containing gas, and the first combined gas is further heated in a region downstream of the second junction by combining the second gas with the first combined gas at the second junction while setting the preheat temperature of the second gas at a temperature equal to or higher than the temperature of the first combined gas.
Abstract:
A sol comprising a precipitated component in an amount of less than 10 mass% based on the total solid content of the sol and comprising titanium oxide comprising a transition metal compound. When the sol is mixed with a binder which can be hardened at ambient temperature, the mixture readily forms a thin film having high photocatalytic performance on a substrate of poor heat resistance such as plastics or paper. The titanium oxide sol can readily forms titanium oxide thin film on surfaces of a variety of substrate materials such as ceramics, glass, metal, plastics, wood, or paper. Articles to which photocatalytic performance or hydrophilicity is imparted include building materials, fluorescent lamps, glass panes, machinery, vehicles, glass products, household electrical appliances, water purifying apparatuses, agricultural materials, electronic apparatus, tools, tableware, bath products, toiletry products, furniture, clothing, cloth products, fibers, leather products, paper products, sporting goods, beauty-related instruments, health improvement instruments, medical goods, futon, containers, eyeglasses, signboards, piping, wiring, brackets, sanitary materials, and automobile parts as well as environmental purification apparatuses/units.
Abstract:
A sol comprising a precipitated component in an amount of less than 10 mass% based on the total solid content of the sol and comprising titanium oxide comprising a transition metal compound. When the sol is mixed with a binder which can be hardened at ambient temperature, the mixture readily forms a thin film having high photocatalytic performance on a substrate of poor heat resistance such as plastics or paper. The titanium oxide sol can readily forms titanium oxide thin film on surfaces of a variety of substrate materials such as ceramics, glass, metal, plastics, wood, or paper. Articles to which photocatalytic performance or hydrophilicity is imparted include building materials, fluorescent lamps, glass panes, machinery, vehicles, glass products, household electrical appliances, water purifying apparatuses, agricultural materials, electronic apparatus, tools, tableware, bath products, toiletry products, furniture, clothing, cloth products, fibers, leather products, paper products, sporting goods, beauty-related instruments, health improvement instruments, medical goods, futon, containers, eyeglasses, signboards, piping, wiring, brackets, sanitary materials, and automobile parts as well as environmental purification apparatuses/units.