Abstract:
Method of notifying a user of site abnormalities via an application configured to access an event server having a first sensor abnormality detector connected to a first sensor, for detecting first abnormal behavior of first sub-events sensed by the first sensor, the first abnormal behavior corresponding to a first abnormal behavior value, a second sensor abnormality detector connected to a second sensor, for detecting second abnormal behavior of second sub-events sensed by the second sensor of a type different from the first sensor, the second abnormal behavior corresponding to a second abnormal behavior value, a correlator for correlating the first and second abnormal behavior values and logging correlated values as a composite event, a data store, the application having a viewer configured to show, on the device, data associated with a plurality of composite events, the viewer further configured to display the plurality of composite events in a temporal order.
Abstract:
A surveillance system generally includes a data capture module that collects sensor data. A scoring engine module receives the sensor data and computes at least one of an abnormality score and a normalcy score based on the sensor data, at least one dynamically loaded learned data model, and a learned scoring method. A decision making module receives the at least one of the abnormality score and the normalcy score and generates an alert message based on the at least one of the abnormality score and the normalcy score and a learned decision making method to produce progressive behavior and threat detection.
Abstract:
A video surveillance system is disclosed. The system includes a model database storing a plurality of models and a vector database storing a plurality of vectors of recently observed trajectories. The system includes a model building module that builds a new motion model corresponding to the motion data of the current trajectory data structure. The system generates a current trajectory data structure having motion data and abnormality scores. The system also includes a database purging module configured to determine a subset of vectors that is most similar to the current trajectory data structure based on a measure of similarity between the subset of vectors and the current trajectory data structure. The database purging module is further configured to replace one of the motion models in the model database with the new motion model based on an amount of vectors in the subset vectors the recentness of the subset of vectors.
Abstract:
A system and method for predictive abnormal behavior detection is disclosed. The system receives surveillance data such as video data and can create and update a plurality of prediction models. The system may also receive video data relating to a moving object and may generate a prediction of the future locations of the moving object based on the generated prediction models. The predicted motion may be scored by a scoring engine to determine if the predicted motion is unsafe or otherwise undesirable
Abstract:
A surveillance system improves accuracy and robustness of abnormal behavior detection of a monitored object traversing a space includes a metadata processing module, a model building module, and a behavior assessment module. The metadata processing module generates trajectory information for a monitor object and determines attributes of the monitored object. The model building module at least one of generates and updates normal motion models based on at least one of the trajectory information, the attributes, and an abnormal behavior score. The behavior assessment module generates the abnormal behavior score based on one of a plurality of methods. A first one of the plurality of methods defines wrong direction behavior. A second one of the plurality of methods defines wandering/loitering behavior. A third one of the plurality of methods defines speeding behavior.
Abstract:
A surveillance system generally includes a data capture module that collects sensor data. A scoring engine module receives the sensor data and computes at least one of an abnormality score and a normalcy score based on the sensor data, at least one dynamically loaded learned data model, and a learned scoring method. A decision making module receives the at least one of the abnormality score and the normalcy score and generates an alert message based on the at least one of the abnormality score and the normalcy score and a learned decision making method to produce progressive behavior and threat detection.
Abstract:
A system for improving site operations by detecting abnormalities includes a first sensor abnormality detector connected to a first sensor and configured to learn a first normal behavior sequence, a second sensor abnormality detector connected to a second sensor and configured to learn a second normal behavior sequence, an abnormality correlation server configured to receive abnormally scored first sensor data and abnormally scored second sensor data, the abnormality correlation server further configured to correlate the received abnormally scored first sensor data and abnormally scored second sensor data sensed at the same time by the first and second sensors and determine an abnormal event; and an abnormality report generator configured to generate an abnormality report based on the correlated the received abnormally scored first sensor data and abnormally scored second sensor data.
Abstract:
A surveillance system improves accuracy and robustness of abnormal behavior detection of a monitored object traversing a space includes a metadata processing module, a model building module, and a behavior assessment module. The metadata processing module generates trajectory information for a monitor object and determines attributes of the monitored object. The model building module at least one of generates and updates normal motion models based on at least one of the trajectory information, the attributes, and an abnormal behavior score. The behavior assessment module generates the abnormal behavior score based on one of a plurality of methods. A first one of the plurality of methods defines wrong direction behavior. A second one of the plurality of methods defines wandering/loitering behavior. A third one of the plurality of methods defines speeding behavior.
Abstract:
A surveillance system implements an architecture and process to support real-time abnormal behavior assessment operations in a distributed scalable sensor network. An automated behavior model builder generates behavior models from sensor data. A plurality of abnormal behavior scoring engines operating concurrently to generate abnormal behavior assessment models by scoring the behavior models. An execution performance manager performs fast switching of behavior models for the abnormal behavior scoring engines. The execution performance manager performs detection of abnormal behavior score distribution characteristic deviation by comparing a current abnormal behavior assessment model to a pre-recorded abnormal behavior assessment model. The execution performance manager selects a pre-recorded behavior model for the abnormal behavior scoring engines when the deviation exceeds a predetermined threshold.
Abstract:
A multi-perspective context sensitive behavior assessment system includes an adaptive behavior model builder establishing a real-time reference model that captures intention of motion behavior. It operates by modeling outputs of multiple user defined scoring functions with respect to multiple references of application specific target areas of interest. The target areas have criticality values representing a user's preference regarding the target areas with respect to one another. The outputs of the scoring functions are multiplied by the critically values to form high level sequences of representation that are communicated to the user.