SCALABLE ROOM TEMPERATURE QUANTUM INFORMATION PROCESSOR
    1.
    发明申请
    SCALABLE ROOM TEMPERATURE QUANTUM INFORMATION PROCESSOR 审中-公开
    可扩展室温度量子信息处理器

    公开(公告)号:WO2012082938A2

    公开(公告)日:2012-06-21

    申请号:PCT/US2011064971

    申请日:2011-12-14

    CPC classification number: G06F15/78 B82Y10/00 G06N99/002

    Abstract: A quantum information processor (QIP) may include a plurality of quantum registers, each quantum register containing at least one nuclear spin and at least one localized electronic spin. At least some of the quantum registers may be coherently coupled to each other by a dark spin chain that includes a series of optically unaddressable spins. Each quantum register may be optically addressable, so that quantum information can be initialized and read out optically from each register, and moved from one register to another through the dark spin chain, though an adiabatic sequential swap or through free-fermion state transfer. A scalable architecture for the QIP may include an array of super-plaquettes, each super-plaquette including a lattice of individually optically addressable plaquettes coupled to each other through dark spin chains, and separately controllable by confined microwave fields so as to permit parallel operations.

    Abstract translation: 量子信息处理器(QIP)可以包括多个量子寄存器,每个量子寄存器包含至少一个核自旋和至少一个局部电子自旋。 至少一些量子寄存器可以通过包括一系列光学不可寻址自旋的黑暗自旋链相互耦合。 每个量子寄存器可以是可光寻址的,使得量子信息可以从每个寄存器被光学初始化和读出,并且通过暗自旋链从一个寄存器移动到另一个寄存器,尽管通过绝热的顺序互换或通过自由费米子状态传送。 用于QIP的可扩展架构可以包括超级平板阵列,每个超级平板包括通过暗自旋链彼此耦合的单独光学寻址的晶片的格子,并且可以通过约束的微波场单独控制,以允许并行操作。

    SPIN BASED MAGNETOMETER
    4.
    发明申请
    SPIN BASED MAGNETOMETER 审中-公开
    旋转式磁力计

    公开(公告)号:WO2009073740A3

    公开(公告)日:2009-09-24

    申请号:PCT/US2008085428

    申请日:2008-12-03

    CPC classification number: G01R33/032 G01N24/10 G01R33/1284 G01R33/24 G01R33/60

    Abstract: A method is disclosed for increasing the sensitivity of a solid state electronic spin based magnetometer that makes use of individual electronic spins or ensembles of electronic spins in a solid-state lattice, for example NV centers in a diamond lattice. The electronic spins may be configured to undergo a Zeeman shift in energy level when photons of light are applied to the electronic spins followed by pulses of an RF field that is substantially transverse to the magnetic field being detected. The method may include coherently controlling the electronic spins by applying to the electronic spins a sequence of RF pulses that dynamically decouple the electronic spins from mutual spin- spin interactions and from interactions with the lattice. The sequence of RF pulses may be a Hahn spin-echo sequence, a Carr Purcell Meiboom Gill sequence, or a MREV8 pulse sequence, by way of example.

    Abstract translation: 公开了一种用于增加固体电子自旋基磁力计的灵敏度的方法,其使用电子自旋或电子自旋的集合在固态晶格中,例如金刚石晶格中的NV中心。 当光子被施加到电子自旋上时,电子自旋可被配置为在能量水平上经历塞曼移动,随后是基本上横向于被检测的磁场的RF场的脉冲。 该方法可以包括通过向电子自旋施加一系列RF脉冲来相干地控制电子自旋,该序列使电子自旋与相互自旋 - 自旋相互作用和与晶格的相互作用动态解耦。 作为示例,RF脉冲的序列可以是Hahn自旋回波序列,Carr Purcell Meiboom Gill序列或MREV8脉冲序列。

    SPIN BASED MAGNETOMETER
    5.
    发明申请
    SPIN BASED MAGNETOMETER 审中-公开
    旋转式磁力计

    公开(公告)号:WO2009073736A1

    公开(公告)日:2009-06-11

    申请号:PCT/US2008/085424

    申请日:2008-12-03

    CPC classification number: G01R33/032 G01N24/10 G01R33/1284 G01R33/24 G01R33/60

    Abstract: A magnetometer for sensing a magnetic field may include a solid state electronic spin system, and a detector. The solid state electronic spin system may contain one or more electronic spins that are disposed within a solid state lattice, for example NV centers in diamond. The electronic spins may be configured to receive optical excitation radiation and to align with the magnetic field in response thereto. The electronic spins may be further induced to precess about the magnetic field to be sensed, in response to an external control such as an RF field, the frequency of the spin precession being linearly related to the magnetic field by the Zeeman shift of the electronic spin energy levels. The detector may be configured to detect output optical radiation from the electronic spin, so as to determine the Zeeman shift and thus the magnetic field.

    Abstract translation: 用于感测磁场的磁力计可以包括固态电子自旋系统和检测器。 固态电子自旋系统可以包含设置在固态晶格内的一个或多个电子自旋,例如金刚石中的NV中心。 电子自旋可以被配置为接收光学激发辐射并响应于此而与磁场对准。 响应于诸如RF场的外部控制,电子自旋可以被进一步感应以接近要感测的磁场的前进,通过电子自旋的塞曼偏移,自旋进动的频率与磁场线性相关 能量水平 检测器可以被配置为检测来自电子自旋的输出光辐射,以便确定塞曼偏移,从而确定磁场。

    LONG-DISTANCE QUANTUM COMMUNICATION
    6.
    发明申请
    LONG-DISTANCE QUANTUM COMMUNICATION 审中-公开
    长距离量子通信

    公开(公告)号:WO2003101013A1

    公开(公告)日:2003-12-04

    申请号:PCT/US2002/015135

    申请日:2002-05-20

    CPC classification number: H04B13/00 H04B10/00

    Abstract: The invention provides systems and methods enabling high fidelity quantum communication over long communication channels even in the presence of significant loss in the channels comprising laser manipulation of quantum correlated atomic ensembles using linear optic components (110, 120), optical sources of low intensity pulses (10), beam splitters (150), single-photon detectors (180, 190) requiring only moderate efficiencies. The invention provides fault-tolerant entanglement generation, connection, using a sequence of steps that each provide built-in entanglement purification and are each resilient to the realistic noise. The invention relies upon collective rather single particle excitations in atomic ensembles and result in communication efficiency scaling polynomially with the total length of a communication channel.

    Abstract translation: 本发明提供了即使在使用线性光学元件(110,120),低强度脉冲光源(110,120)的量子相关原子集的激光操纵​​的信道中存在显着损失的情况下,也可以在长通信信道上实现高保真量子通信的系统和方法 10),分束器(150),仅需要中等效率的单光子检测器(180,190)。 本发明提供容错纠缠生成,连接,使用一系列步骤,每个步骤提供内置的纠缠净化,并且各自适应现实的噪声。 本发明依赖于在原子集合中的集体而非单个的粒子激发,并且导致通信效率与通信信道的总长度多项式缩放。

    ELECTRONIC SPIN BASED ENHANCEMENT OF MAGNETOMETER SENSITIVITY
    10.
    发明申请
    ELECTRONIC SPIN BASED ENHANCEMENT OF MAGNETOMETER SENSITIVITY 审中-公开
    基于电子自旋的磁控计灵敏度的增强

    公开(公告)号:WO2009073740A2

    公开(公告)日:2009-06-11

    申请号:PCT/US2008/085428

    申请日:2008-12-03

    CPC classification number: G01R33/032 G01N24/10 G01R33/1284 G01R33/24 G01R33/60

    Abstract: A method is disclosed for increasing the sensitivity of a solid state electronic spin based magnetometer that makes use of individual electronic spins or ensembles of electronic spins in a solid-state lattice, for example NV centers in a diamond lattice. The electronic spins may be configured to undergo a Zeeman shift in energy level when photons of light are applied to the electronic spins followed by pulses of an RF field that is substantially transverse to the magnetic field being detected. The method may include coherently controlling the electronic spins by applying to the electronic spins a sequence of RF pulses that dynamically decouple the electronic spins from mutual spin- spin interactions and from interactions with the lattice. The sequence of RF pulses may be a Hahn spin-echo sequence, a Carr Purcell Meiboom Gill sequence, or a MREV8 pulse sequence, by way of example.

    Abstract translation: 公开了一种用于增加固体电子自旋基磁力计的灵敏度的方法,其使用电子自旋或电子自旋的集合在固态晶格中,例如金刚石晶格中的NV中心。 当光子被施加到电子自旋上时,电子自旋可被配置为在能量水平上经历塞曼移动,随后是基本上横向于被检测的磁场的RF场的脉冲。 该方法可以包括通过向电子自旋施加一系列RF脉冲来相干地控制电子自旋,该序列使电子自旋与相互自旋 - 自旋相互作用和与晶格的相互作用动态解耦。 作为示例,RF脉冲的序列可以是Hahn自旋回波序列,Carr Purcell Meiboom Gill序列或MREV8脉冲序列。

Patent Agency Ranking