Abstract:
A method and system for managing a cell sectorized by both an angle in azimuth and a distance from a base station are disclosed. A wireless communication system comprises a base station and a cell. The base station comprises an antenna array for generating a plurality of directional beams which are steerable both in azimuth and elevation. The cell is sectorized into a plurality of sectors defined in accordance with an angle in azimuth and a distance from the base station. At least one directional beam serves each sector. Beams serving adjacent sectors overlap each other, and a softer handover in a cell is performed in the overlapping region.
Abstract:
A method and apparatus for utilizing a switched beam directional antenna in a wireless transmit/receive unit (WTRU) is disclosed. A wireless communication system includes a serving cell, a neighbor cell and a WTRU. The WTRU is configured to generate and steer a directional beam in a plurality of directions. Once the WTRU registers with the wireless communication system, the WTRU receives messages transmitted by the serving cell. The WTRU measures signal quality of messages received in each of a plurality of predetermined directions while steering the directional beam antenna. The WTRU selects a particular one of the directions having the best signal quality. As the WTRU constantly moves, the WTRU monitors signal quality in the selected direction, and switches to another direction when the signal quality in a current direction drops below a predetermined threshold.
Abstract:
A window stay for the hinged mounting of a window sash and a window frame. The window stay comprises a frame mounting plate (10), a sash mounting plate (11) and an arm (12), the plate (11) being pivotally coupled to a carriage (16) slidingly engaged with the frame mounting plate (10). The arm (12) is pivotally coupled to a mounting (17) which is releasably mountable to the frame mounting plate (10) after the sash mounting plate (11) has been installed on a window sash. The mounting (17) includes a spine (31) which engages in a guide (21) with which the carriage (16) is slidingly engaged. The mounting (17) also includes a finger (29) which is engaged against longitudinal movement on the frame mounting plate (10).
Abstract:
A method and system for managing a cell sectorized by both an angle in azimuth and a distance from a base station are disclosed. A wireless communication system comprises a base station and a cell. The base station comprises an antenna array for generating a plurality of directional beams which are steerable both in azimuth and elevation. The cell is sectorized into a plurality of sectors defined in accordance with an angle in azimuth and a distance from the base station. At least one directional beam serves each sector. Beams serving adjacent sectors overlap each other, and a softer handover in a cell is performed in the overlapping region.
Abstract:
A wireless communication method and antenna system for determining the direction of arrival (DOA) of signals in azimuth and elevation, (i.e., in three dimensions), to form a beam for transmitting and receiving signals. The system includes two antenna arrays, each having a plurality of antenna elements, two first stage multi-mode-port matrices, at least one second stage multi-mode-port matrix, and azimuth phase detector, an elevation amplitude detector, a plurality of phase shifters and a transceiver. The antenna arrays and the first stage multi-mode-port matrices form a plurality of orthogonal omni-directional modes. Each of the modes has a characteristic phase set. Two of the modes' phases are used to determine DOA in azimuth. The second stage multi-mode-port matrix forms a sum-mode and a difference-mode used to determine the DOA of the received signals in elevation.
Abstract:
A locking device (10) for a pair of telescoping tubular poles (11 and 12). An engagement member (14) fits to one end of first pole (12) and is slidingly engaged within second pole (11). A groove (17) of the engagement member (14) engages with a rib (19) in the second pole (11) so the first pole (12) cannot rotate relative to the second pole (11). First pole (12) also slidingly engages through a clamp (20) which is mounted to the end of the second pole (11). A cover (28) fits over the clamp (20). A cam (34) located between the inside wall of cover (28) engages with a clamping element (25) of the clamp (20). A lever (33) extends from cam (34) through an opening (32) in the cover (28). By manipulating the lever (33) the cam (34) can cause the clamping element (25) to clampingly lock the first pole (12) against sliding movement in the second pole (11).
Abstract:
A method and apparatus for dynamically selecting antennas for transmission and/or reception. The apparatus may be an antenna system, a base station, a wireless transmit/receive unit (WTRU), and/or an integrated circuit (IC). A subset of a plurality of antennas available for use is determined at any given moment in time. The antennas may be comprised by a Shelton-Butler matrix fed circular array including a plurality of selectable mode ports. One or more characteristics, (e.g., antenna cross-correlation, multipath), of antenna signals received via the antennas/ mode ports are analyzed on a continual basis, and the number of available antennas/mode ports needed for transmission and/or reception is determined. At least one of the available antennas/mode ports associated with at least one received antenna signal having a better characteristic than the other received antenna signals is selected. The at least one selected antenna/mode port is then used for transmission and/or reception.
Abstract:
A matrix-fed circular array system includes a plurality of antennas, a plurality of azimuth matrices in communication with the antennas, and a plurality of elevation matrices in communication with the azimuth matrices. The array system forms M x N beams, where M is the number of azimuth beams, and N is the number of elevation beams. In another embodiment, through the use of a Shelton-Butler or Butler matrix which includes a plurality of hybrids, the system outputs omni-directional pancake-shaped radiation patterns that are isolated from each other when a communication signal is input into the system. In yet another embodiment, the system uses a beam forming network including two Shelton-Butler matrices. A first one of the Shelton-Butler matrices creates omni-directional pancake beams that are isolated from each other, and a second Shelton-Butler matrix creates multiple directive beams in an azimuth plane.
Abstract:
A method and apparatus for dynamically selecting antennas for transmission and/or reception. The apparatus may be an antenna system, a base station, a wireless transmit/receive unit (WTRU), and/or an integrated circuit (IC). A subset of a plurality of antennas available for use is determined at any given moment in time. The antennas may be comprised by a Shelton-Butler matrix fed circular array including a plurality of selectable mode ports. One or more characteristics, (e.g., antenna cross-correlation, multipath), of antenna signals received via the antennas/ mode ports are analyzed on a continual basis, and the number of available antennas/mode ports needed for transmission and/or reception is determined. At least one of the available antennas/mode ports associated with at least one received antenna signal having a better characteristic than the other received antenna signals is selected. The at least one selected antenna/mode port is then used for transmission and/or reception.
Abstract:
A method and apparatus for utilizing a switched beam directional antenna in a wireless transmit/receive unit (WTRU) is disclosed. A wireless communication system includes a serving cell, a neighbor cell and a WTRU. The WTRU is configured to generate and steer a directional beam in a plurality of directions. Once the WTRU registers with the wireless communication system, the WTRU receives messages transmitted by the serving cell. The WTRU measures signal quality of messages received in each of a plurality of predetermined directions while steering the directional beam antenna. The WTRU selects a particular one of the directions having the best signal quality. As the WTRU constantly moves, the WTRU monitors signal quality in the selected direction, and switches to another direction when the signal quality in a current direction drops below a predetermined threshold.