Abstract:
A bottomhole assembly (BHA) coupled to a drill string includes one or more controllers, and a hole enlargement device that selectively enlarges the diameter of the wellbore formed by the drill bit. The hole enlargement device includes an actuation unit that may move extendable cutting elements o the hole enlargement device between a radially extended position and a radially retracted position. The actuation unit may be responsive to a signal that is transmitted from a downhole and/or a surface location. The hole enlargement device may also include one or more position sensors that transmit a position signal indicative of a radial position of the cutting elements. In an illustrative operating mode, one or more operating parameters of the hole enlargement device may be adjusted based on one or more measured parameters. This adjustment may be done in a closed-loop or automated fashion and/or by human personnel.
Abstract:
A drill bit according to one embodiment includes a center member configured to rotate at a first speed and an outer member disposed outside the center member, wherein the outer member is configured to rotate at a second speed. The drill bit also includes a first cutter disposed on the center member and a second cutter disposed on the outer member, wherein the first speed and second speeds are configured to control a resultant side force of the drill bit.
Abstract:
Reamer bits have cutters with different effective back rake angles. Drilling systems include a pilot bit and a reamer bit, wherein cutters in shoulder regions of the reamer bit have a greater average effective back rake angle than cutters in shoulder regions of the pilot bit. Methods of drilling wellbores include drilling a bore with a pilot bit, and reaming the bore with a reamer bit having cutters in shoulder regions of the reamer bit that have an average effective back rake angle greater than that of cutters in shoulder regions of the pilot bit. Methods of forming drilling systems include attaching pilot and reamer bits to a drill string, and positioning cutters in shoulder regions of the reamer bit to have an average effective back rake angle greater than that of cutters in shoulder regions of the pilot bit.
Abstract:
Apparatus and method for downhole formation fluid sampling include conveying a carrier into a well borehole that traverses a subterranean formation of interest, the carrier having a port and placing the port in fluid communication with the subterranean formation of interest. The method includes urging a fluid into the port using a fluid control device, the fluid containing a formation fluid and a contaminant, generating a first signal indicative of a first fluid characteristic of the fluid using a first test device in communication with the fluid, and generating a second signal indicative of a second fluid characteristic of the fluid using a second test device in communication with the fluid. The first signal and the second signal are processed using a processing device to estimate a level of contamination in the fluid, and a control signal is generated when the estimated level of contamination meets a predetermined value.
Abstract:
An apparatus for estimating a property of a fluid of interest downhole includes: a carrier configured to be conveyed through a borehole penetrating an earth formation; an emitter disposed at the carrier and configured to emit electromagnetic energy; and a sample chamber configured to contain a sample of the fluid of interest and having a window transmissive to electromagnetic energy emitted by the emitter, the electromagnetic energy interacting with the sample of the fluid of interest with a characteristic related to the property; wherein a path of the emitted electromagnetic energy from the emitter to the window of the sample chamber traverses a gas or a vacuum.
Abstract:
A method, apparatus and computer-readable medium for reducing a vibration of a drill string in a borehole. A sensor of the drill string obtains one or more measurements of a parameter of the vibration. A processor determines at least one force for controlling the measured vibration from the measured parameter. At least one actuator applies the determined at least one force against the borehole wall to control the vibration of the drill string.
Abstract:
A bottomhole assembly (BHA) coupled to a drill string includes one or more controllers, and a hole enlargement device that selectively enlarges the diameter of the wellbore formed by the drill bit. The hole enlargement device includes an actuation unit that may move extendable cutting elements o the hole enlargement device between a radially extended position and a radially retracted position. The actuation unit may be responsive to a signal that is transmitted from a downhole and/or a surface location. The hole enlargement device may also include one or more position sensors that transmit a position signal indicative of a radial position of the cutting elements. In an illustrative operating mode, one or more operating parameters of the hole enlargement device may be adjusted based on one or more measured parameters. This adjustment may be done in a closed-loop or automated fashion and/or by human personnel.
Abstract:
A method of determining a formation pressure during drawdown of a formation comprises sampling fluid from a formation using a downhole tool. A fluid sample pressure is determined at two different times during the drawdown. The fluid sample pressures are analyzed using a higher-order pressure derivative with respect to time technique to determine the formation pressure during the drawdown. Another method of determining a formation pressure during drawdown of a formation comprises sampling fluid from a formation using a downhole tool. A fluid sample pressure is determined at two different times during the drawdown. The fluid sample pressures are analyzed using at least two analysis techniques to each determine an estimate of the formation pressure during the drawdown.
Abstract:
A drill bit according to one embodiment includes a center member configured to rotate at a first speed and an outer member disposed outside the center member, wherein the outer member is configured to rotate at a second speed. The drill bit also includes a first cutter disposed on the center member and a second cutter disposed on the outer member, wherein the first speed and second speeds are configured to control a resultant side force of the drill bit.
Abstract:
Reamer bits have cutters with different effective back rake angles. Drilling systems include a pilot bit and a reamer bit, wherein cutters in shoulder regions of the reamer bit have a greater average effective back rake angle than cutters in shoulder regions of the pilot bit. Methods of drilling wellbores include drilling a bore with a pilot bit, and reaming the bore with a reamer bit having cutters in shoulder regions of the reamer bit that have an average effective back rake angle greater than that of cutters in shoulder regions of the pilot bit. Methods of forming drilling systems include attaching pilot and reamer bits to a drill string, and positioning cutters in shoulder regions of the reamer bit to have an average effective back rake angle greater than that of cutters in shoulder regions of the pilot bit.