Abstract:
Control valves can allow for a steering assembly of a drill string. An exemplary control valve can include a first valve element including a first orifice, the first valve element being movable by actuation by a motor, and a second valve element including an orifice, wherein flow passing through the first valve element orifice passes through the second orifice and into a flow channel to be in fluid communication with a piston bore to exert pressure against a piston movable within the piston bore, the piston being coupled to a steering pad for applying force against the wellbore wall to steer a direction of the drill string. The first valve element is movable with respect to the second valve element to change flow through the first valve element orifice and the second valve element orifice to modify fluid pressure within the flow channel that is exerted against the piston.
Abstract:
Various implementations directed to a continuous survey using magnetic sensors are provided. In one implementation, a method may include acquiring continuous survey data during an outrun data acquisition using a survey tool disposed within a previously drilled section of a wellbore. The survey tool may have one or more magnetic sensors, and the survey tool may be configured to ascend within the previously drilled section of the wellbore during the outrun data acquisition. The method may further include transmitting the continuous survey data to a computing system, where the computing system may be configured to generate a continuous survey of the previously drilled section of the wellbore based on the continuous survey data.
Abstract:
A drilling machine for a wellbore is provided. The drilling machine may include a dynamic lateral pad that is movable between an extended and retracted position. In the extended position, the pad moves the drill bit in a direction for drilling. The drilling machine may include a dynamic lateral cutter that is movable between an extended and retracted position. In at least the extended position, the cutter engages the wellbore and removes formation. The drilling machine may include a monolithic or integral drill bit / drive shaft to reduce the distance between a positive displacement motor and a distal end of the monolithic or integral drill bit / drive shaft. The drilling machine may include separate cutting structures that have different rotational speeds and can further utilize the integral drill bit / drift shaft and / or a bent housing that generates an off-axis rotation which helps optimize the formation removal in the center area of the wellbore.
Abstract:
A downhole closed loop method for controlling a curvature of a subterranean wellbore while drilling includes controlling a direction of drilling such that the drilling attitude is substantially equal to a setpoint attitude. A setpoint rate of penetration is processed in combination with a setpoint dogleg severity to compute a setpoint attitude increment. The setpoint attitude may be adjusted by the setpoint attitude increment. The setpoint attitude may be incremented at some interval to control the curvature of the wellbore while drilling.
Abstract:
A method and apparatus for drilling a wellbore is disclosed. The wellbore is drilled with a drill string that includes a bypass device having a fluid passage therethrough by supplying a fluid through the bypass device at a first flow rate, wherein the fluid circulates to a surface location via an annulus between the drill string and the wellbore. The flow rate of the fluid is altered to a second flow rate. A time period is defined and a mechanical motion of the bypass device is initiated. A parameter related to the mechanical motion of the bypass device and a parameter related to flow rate are detected. The bypass device is activated to divert a portion of the fluid to the annulus when the parameter related to mechanical motion is detected and the parameter related to flow rate is present during the defined time period.
Abstract:
An acid tunneling system for forming lateral tunnels from a central wellbore. The acid tunneling system includes an acid tunneling tool having an acid injection nozzle which can be steered and oriented in response to downhole parameters that are detected and sent to surface in real time.
Abstract:
A method for magnetic ranging includes switching an electromagnet deployed in a target wellbore between at least first and second states and acquiring a plurality of magnetic field measurements at a magnetic field sensor deployed on a drill string in a drilling wellbore while the electromagnet is switching. The magnetic field measurements may be sorted into at least first and second sets corresponding to the first and second states of the electromagnet. The first and second sets of magnetic field measurements are then processed to compute at least one of a distance and a direction from the drilling well to the target. The electromagnet may be automatically switched back and forth between the first and second states independently from the acquiring and sorting of the magnetic field measurements.
Abstract:
A method and system for directional drilling while conveying a liner, with latching parking capabilities for multiple trips, is disclosed. As the wellbore is drilled, each casing and liner is installed having upper and lower interior latch couplings. A liner to be installed below a parent casing includes an exterior latch assembly dimensioned for connection to the interior latch couplings of the parent casing. A bottom hole assembly may include upper and lower exterior inner string latch assemblies for connection to the upper and lower interior latch couplings of the liner to be installed. Such arrangement allows the liner to be conveyed and installed with the bottom hole assembly while directional drilling and for the liner to be temporarily hung from the parent casing for bottom hole assembly change-out while drilling. Float plugs dimensioned to be landed at lower liner interior latch couplings may be provided for cementing operations.
Abstract:
A method for optimizing deposit production in a well includes localizing the low resistivity fluid deposits in a geological formation. Once the deposits are mapped, production of the fluid deposit from the geological formation is optimized based on the localizing. The optimization may include adjustment of at least one of a drilling parameter or a production parameter.
Abstract:
A method for rotary steerable drilling, comprising calculating a first plurality of convergence plans if an estimated position of a drill bit is not within a defined margin of error of a desired point along a planned path for a borehole, calculating a second plurality of convergence plans if the estimated position of the drill bit is not within the margin of error, selecting a convergence plan that best satisfies a set of target parameters from the first and second plurality of convergence plans, producing a set of control parameters representing the selected convergence plan, transmitting one or more commands to one or more rotary steering components to actuate the one or more rotary steering components, in order to alter the planned path for the borehole in accordance with the set of control parameters, and drilling at least a portion of the borehole based on the set of control parameters.