Abstract:
A steering collar for deflecting a drill string in a borehole to cause the borehole to be drilled in a different direction. The steering collar surrounds a hollow drive shaft which is driven by the drill string. During normal drilling operations, the steering collar does not rotate with the drive shaft. The steering collar has three sets of pistons operated by the pressure of the drilling fluid, one set of which is pressure relieved. Drill fluid that is pumped down the drill string flows into the hollow drive shaft and through ports to activate the pistons which thereby force corresponding pads outwardly into contact with the sidewall of the borehole. Since the one set of pistons is pressure relieved, it does not force its pad against the borehole sidewall with as much pressure as the other two sets of pistons force their pads against the sidewall of the borehole. Accordingly, the steering collar is deflected laterally in the borehole so that the drill bit is also steered laterally to cause drilling in a different direction. In order to reorient the steering collar in the borehole, the steering collar can be locked to the drive shaft so that when the drill string is rotated, the steering collar is also rotated so that it is moved to a new angular position in the borehole.
Abstract:
Control valves can allow a well operator to steer a drill string. An exemplary control valve can include a valve body with an axial bore and a radial orifice in fluid communication with the axial bore, wherein flow passing through the axial bore passes through the radial orifice and into a piston flow channel to be in fluid communication with a piston bore to exert pressure against a piston movable within the piston bore, the piston being coupled a steering pad for applying force against the wellbore wall. A rotary valve element is disposed within the axial bore and including an actuation flow channel, wherein the rotary valve element is rotatable with respect to the axial bore to change flow through the actuation channel and the radial orifice to modify fluid pressure within the piston flow channel that is exerted against the piston.
Abstract:
The rotary steerable drilling tool and system described herein combines both point- the-bit and push-the-bit techniques to actively change the direction of the borehole trajectory. In this system, the deflection of the drill bit is limited to a single degree of freedom relative to a coordinate system that is fixed to and rotates with the rotary steerable drilling tool, resulting in a simplified attachment of the bit assembly and bias unit mechanics. Further, steering of the well is accomplished by dynamically controlling the spatial phase and amplitude of the coherent symmetrical bidirectional reciprocating deflections of the drill bit relative to a fixed terrestrial datum as the tool is rotating, simultaneously pointing and pushing the bit. Alternatively, when not being used to change the direction of the borehole trajectory, the rotary steerable drilling tool apparatus can be used to mitigate or abate the stick-slip tendencies of the drill string by dithering the bit using spatially variable asynchronous symmetrical bidirectional reciprocating deflections of the drill bit at frequencies that are different from the rotational frequency of the bottom hole assembly. When neither steering nor stick-slip abatement is active, the bit can be mechanically locked into the neutral position.
Abstract:
A method and related apparatus for forming a wellbore in a subterranean formation includes forming a drill string that has a drill bit at a distal end, a drilling motor configured to rotate the drill bit with a drive shaft; a joint coupled to the drive shaft; and an actuator assembly displacing the drive shaft between a first and a second deflection angle, the drive shaft being movable at each of the deflection angles until a predetermined weight is applied to the bit. The method also includes conveying the drill bit through the wellbore and fixing the drive shaft in at least one of the first and the second deflection angles by applying a predetermined weight on the bit.
Abstract:
Systems and methods of counteracting downhole reactive forces within a directional drilling tool are disclosed. The directional drilling tool includes a steering mechanism for selectively pivoting a bit shaft with respect to an elongate housing. A preloaded flexible member may be provided between an upper end of the bit shaft and an elongate housing to counteract reactive forces applied by a geological formation on a drill bit at a lower end of the bit shaft. Where sufficient reactive forces are transmitted through the bit shaft to overcome the preload, the flexible member will be induced to flex, permitting some movement of the upper end of the bit shaft. This movement limits the force that may be applied by the steering mechanism, which can extend the useful life of the directional drilling tool and may permit the power required to drive the drill bit to be maintained at a consistent value.
Abstract:
A steerable earth boring assembly which includes an annular collar and a drive shaft with a drill bit, where the shaft pivots with respect to the collar. An upstream portion of the shaft inserts into an orientation sleeve which resides in the collar. An axial bore is obliquely formed through the sleeve, and in which the upstream portion inserts. Rotating the sleeve causes precession of the upstream portion, thereby pivoting the drill bit obliquely to the collar. Selective rotation of the sleeve orients the drill bit into a designated orientation for forming a deviated wellbore. Included in the assembly is a flow tube with an end in sealing contact with the drive shaft.
Abstract:
A steerable earth boring assembly which includes an annular collar and a drive shaft with a drill bit, where the shaft pivots with respect to the collar. An upper portion of the shaft inserts into an orientation sleeve which resides in the collar. An axial bore is obliquely formed through the sleeve, and in which the upper portion inserts. Rotating the sleeve causes precession of the upper portion, thereby pivoting the drill bit obliquely to the collar. Selective rotation of the sleeve orients the drill bit into a designated orientation for forming a deviated wellbore. Included in the assembly is a flow tube with an end in sealing contact with the drive shaft.
Abstract:
A drilling apparatus having a drive section and a bearing section axially distal to the drive section. The bearing section includes a bearing housing having a bearing housing bore defining a bearing housing bore axis, a sleeve assembly received within the bearing housing bore, the sleeve assembly having a sleeve assembly bore defining a sleeve assembly bore axis, a driveshaft received within the sleeve assembly bore, and a bearing assembly for rotatably supporting the driveshaft within the sleeve assembly bore. The sleeve assembly includes a plurality of axially arranged sleeve sections. The sleeve assembly bore axis is oblique to the bearing housing bore axis. The sleeve sections may be received within the bearing housing bore so that they maintain a fixed angular position relative to each other and relative to the bearing housing, and so that they maintain a fixed axial position relative to the bearing housing.
Abstract:
Adjustable drill string housings are described for use in the directional drilling of wellbores, e.g. wellbores for hydrocarbon recovery wells. The adjustable drill string housings permit adjustment of a bend angle in the housings without removing the housings from a wellbore. In some exemplary embodiments, the bend angle can be adjusted by changing the internal stresses in a support member carried by the housings. In other embodiments, the bend angle may be adjusted by causing failure of sacrificial support members carried by the housings, and the failure may be caused by delivering chemicals through a chemical delivery system to the sacrificial support members. Methods of operating the adjustable drill string housings include multi-lateral drilling operations wherein the bend angle is adjusted when a casing window has been detected.
Abstract:
A drilling assembly includes a straight housing in which a mud motor assembly is mounted. The mud motor includes a rotor that rotates within a stator. The rotor has an axial centerline substantially parallel with the housing. A drivetrain is coupled between the rotor and a driveshaft. The driveshaft is coupled to a drill head. The driveshaft has a centerline that is non-coincident with (i.e., offset or angled) the axial centerline. The angle between the driveshaft centerline and the axial centerline may be fixed or variable. The angle may be variable in response to an axial force, imparted to the rotor, that is transferred to the driveshaft through the drivetrain. Additional apparatus, systems, and methods are disclosed.