Abstract:
The present invention pertains to a process for carrying out a high-speed stop in a Fischer-Tropsch process which comprises providing a feed to a fixed bed reactor comprising a Fischer-Tropsch catalyst, the reactor being at reaction temperature and pressure, and withdrawing an effluent from the reactor, characterised in that the high-speed stop is effected by blocking provision of feed to the reactor and simultaneously blocking the withdrawal of effluent from the reactor.
Abstract:
A process for reducing the viscosity a heavy hydrocarbon feedstock, comprising: supplying the heavy hydrocarbon feedstock and elemental sulphur to a reaction zone and reacting, in the liquid phase, at a temperature in the range of from 300 to 750°C, a part of the heavy hydrocarbon feedstock with the elemental sulphur to form a reaction mixture comprising heavy hydrocarbon stream, carbon disulphide and hydrogen sulphide, followed by cooling the reaction mixture to provide treated heavy hydrocarbon stream comprising carbon disulphide. The invention also concerns products obtainable by the above process, as well as its use in pipeline transportation.
Abstract:
A process for the preparation of a packed bed comprising an iron enriched cobalt catalyst for use in a Fischer-Tropsch reaction, the process comprising the steps of: (a) providing a packed bed with one or more catalyst particles comprising metallic cobalt; (b) contacting a part of the catalyst particle(s) in the packed bed with an iron containing compound. The process is preferably conducted in situ which conveniently results in an iron containing cobalt catalyst with a higher C 5+ selectivity. In certain preferred embodiments the concentration of iron increases towards the surface of the resulting catalyst particles whereas the cobalt concentration is constant which further increases the selectivity of the catalyst to producing C 5+ hydrocarbons.
Abstract:
Shaped catalyst or catalyst precursor containing a catalytically active component or a precursor therefor, the component selected from elements of Group VIII of the Periodic Table of the Elements, supported on a carrier, which catalyst or catalyst precursor is an elongated shaped particle comprising three protrusions each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, each of the six circles touching two neighbouring circles whilst three alternating circles are equidistant to the central circle and may be attached to the central circle, minus the space occupied by the three remaining outer circles and including the six interstitial regions. The invention further relates to a process to prepare the catalyst or catalyst precursor from a shapeable dough, to the die-plate used for the preparation of an extruded catalyst or catalyst precursor, to the use of the catalysts, as well as to hydrocarbons prepared by using the catalyst. The invention further relates to a process to obtain fuels and optionally base oils, by hydrogenation, hydroisomerisation and/or hydrocracking of the hydrocarbons prepared by using the catalyst.
Abstract:
The invention relates to a process for the purification of titania by treating the titania with an aqueous solution comprising one or more ammonium compounds at elevated temperatures, separating the titania from the aqueous solution, drying the titania and, optionally, calcination of the dried titania. More especially the invention relates to the removal of sulphur (mainly present in the form of sulphate compounds) from the titania. The titania purified according to the above process is especially suitable for the use as catalyst carrier.
Abstract:
Process for the preparation of isopropanol, wherein a benzene-contaminated feed of acetone is hydrogenated to obtain isopropanol and hydrogenation products of benzene. Combination of such a process with a process for the preparation of phenol and combination of such a process with a series of separation steps.
Abstract:
A system for producing oil and/or gas comprising a system for producing oil and/or gas comprising a formation comprising a mixture of oil and/or gas and a carbon disulfide formulation and/or a carbon oxysulfide formulation; a mechanism for releasing a separating agent into the formation, the separating agent adapted to separate the oil and/or gas from the carbon disulfide formulation and/or the carbon oxysulfide formulation.
Abstract:
A system for producing oil and/or gas comprising a mechanism for releasing at least a portion of a sulfur containing compound into a formation; a first mechanism for converting at least a portion of the sulfur containing compound into a carbon disulfide formulation and/or a carbon oxysulfide formulation, the first mechanism for converting within the formation; and a second mechanism for converting at least a portion of the carbon disulfide formulation and/or a carbon oxysulfide formulation into another compound, the second mechanism for converting within the formation.
Abstract:
The invention provides a process for the manufacture of carbon disulphide comprising supplying a molecular oxygen-containing gas and a feedstock comprising a hydrocarbonaceous compound to a reaction zone containing a liquid elemental sulphur phase and reacting, in the liquid sulphur phase, at a temperature in the range of from 300 to 750 °C, the hydrocarbonaceous compound with elemental sulphur to form carbon disulphide and hydrogen sulphide and oxidising at least part of the hydrogen sulphide formed to elemental sulphur and water. The invention further provides the use of a liquid stream comprising carbon disulphide, hydrogen sulphide and carbonyl sulphide obtainable such process for enhanced oil recovery.
Abstract:
The invention provides a process for producing a gas stream depleted of H 2 S from a feed gas stream comprising H 2 S, the process comprising the steps of: (a) selectively oxidizing H 2 S by supplying the feed gas stream comprising H 2 S, an inert liquid medium and a molecular-oxygen comprising gas stream to a reaction zone comprising at least one catalytic zone comprising an oxidation catalyst and contacting the oxidation catalyst of each catalytic zone with the feed gas stream and/or the molecular-oxygen comprising gas stream in the presence of inert liquid medium at a temperature in the range of from 120 to 160 °C to form elemental sulphur and the gas stream depleted of H 2 S, under such conditions that the elemental sulphur formed is essentially in liquid form and is removed from the reaction zone with inert liquid medium to obtain a liquid stream comprising inert liquid medium and essentially liquid elemental sulphur; (b) optionally separating the liquid stream obtained in step (a) into a first liquid phase enriched in inert liquid medium and a second liquid phase enriched in liquid elemental sulphur; (c) combusting at least part of the liquid stream obtained in step (a) or at least part of the second liquid phase obtained in step (b) to form a fluid stream comprising sulphur dioxide.