Abstract:
A refrigerant vapor compression system and a method of controlling the system are adapted for controlling the distribution of cooling capacity between two or more temperature controlled zones.
Abstract:
A refrigeration system for a mobile unit includes a refrigeration loop (32), an air duct (70), a sensor (34) and a shock absorption unit (36). The refrigeration loop includes a compressor, a condenser, a refrigerant regulator and an evaporator (64). The air duct directs air from an air inlet to the evaporator, which air duct is defined by first and second panels. The sensor is disposed in the air duct. The shock absorption unit mounts the sensor to and provides a limited thermal conduction path between the sensor and the first panel (22).
Abstract:
A controller for controlling a combined heat and power (CHP) system which can include one or more CHP units, can comprise a high level optimizer and one or more low level optimizers. The high level optimizer can be configured to optimize a total cost of producing heating, cooling, and electric power, by allocating total heating, cooling, and/or electric power setpoints one or more CHP unit types, based on the fuel price, CHP unit operational constraints, and/or heating, cooling, and/or electric power demand. The low level optimizer can be configured to allocate cooling, heating, and/or electric power setpoints to individual CHP units, based on the high level allocation to CHP unit types.
Abstract:
A transport refrigeration system is provided with a control apparatus including an inverter and a microprocessor, with the microprocessor receiving signals representative of sensed values of the compressor discharge temperature and pressure, as well as the suction pressure, and controlling the inverter to responsively provide a selective level of electrical voltage and frequency to the compressor in order to maintain a desired compressor envelope.
Abstract:
A controlled pressure release valve includes a valve body having a gas inlet for connection to a gas container and a gas outlet for delivering gas to a protected area. The controlled valve comprises a slidable spool housed in the valve body that is slidable between a first position and a second position. The slidable spool has a first end and a second end. A primary flow passage connects the gas inlet and the gas outlet and increases with lineal movement of the slidable spool. The sliding spool is biased towards the first position by a gas pressure applied by the second chamber and a spring.
Abstract:
A system includes a heat pump configured to match a working fluid's temperature to a fluid temperature set-point, a fluid pump in fluid communication with the heat pump through the working fluid and configured to match the working fluid's pressure/flow to a fluid pressure/flow set-point, at least one heat exchanger in fluid communication with the fluid pump, and a supervisory controller in signal communication with the at least one heat exchanger, the fluid pump, and the heat pump. The at least one heat exchanger includes a proportional valve and a return air temperature gauge configured to monitor return air temperature associated therewith. The supervisory controller is configured to vary the fluid temperature set-point and vary the fluid pressure/flow set-point based upon a position of the proportional valve and the return air temperature.
Abstract:
A refrigeration system for a mobile unit includes a refrigeration loop, an air duct, a sensor and a shock absorption unit. The refrigeration loop includes a compressor, a condenser, a refrigerant regulator and an evaporator. The air duct directs air from an air inlet to the evaporator, which air duct is defined by first and second panels. The sensor is disposed in the air duct. The shock absorption unit mounts the sensor to and provides a limited thermal conduction path between the sensor and the first panel.
Abstract:
A method and system for operating a CO2 refrigeration system (20) is provided. Two pressures are controlled by two controllers (28) through two valves (30, 40) in this system. A first valve (30, 40) is actuated by a first controller (28) using a first transfer function in response to the first measured pressure. A second valve (30, 40) is actuated by a second controller (28) using a second transfer function in response to the second measured pressure. When it is determining the second valve (30, 40) failed to operate correctly, the first valve (30, 40) is actuated by a third controller (28) using a third transfer function.
Abstract:
A refrigerant vapor compression system and a method of controlling the system are adapted for controlling the distribution of cooling capacity between two or more temperature controlled zones.
Abstract:
A system includes a heat pump configured to match a working fluid's temperature to a fluid temperature set-point, a fluid pump in fluid communication with the heat pump through the working fluid and configured to match the working fluid's pressure/flow to a fluid pressure/flow set-point, at least one heat exchanger in fluid communication with the fluid pump, and a supervisory controller in signal communication with the at least one heat exchanger, the fluid pump, and the heat pump. The at least one heat exchanger includes a proportional valve and a return air temperature gauge configured to monitor return air temperature associated therewith. The supervisory controller is configured to vary the fluid temperature set-point and vary the fluid pressure/flow set-point based upon a position of the proportional valve and the return air temperature.