Abstract:
The present disclosure relates to methods of treating EPAS1-related diseases such as cancer, metastases, astrocytoma, bladder cancer, breast cancer, chondrosarcoma, colorectal carcinoma, gastric carcinoma, glioblastoma, head and neck squamous cell carcinoma, hepatocellular carcinoma, lung adenocarcinoma, neuroblastoma, non-small cell lung cancer, melanoma, multiple myeloma, ovarian cancer, rectal cancer, renal cancer, clear cell renal cell carcinoma (and metastases of this and other cancers), gingivitis, psoriasis, Kaposi's sarcoma-associated herpesvirus, preemclampsia, inflammation, chronic inflammation, neovascular diseases, and rheumatoid arthritis, using a therapeutically effective amount of a RNAi agent to EPAS1.
Abstract:
The invention relates to double- stranded ribonucleic acid (dsRNA) compositions targeting the KLF1 gene and the BCL11A gene, and methods of using such dsRNA compositions to inhibit expression of KLF1 and BCL11 A, respectively.
Abstract:
The present disclosure relates to RNAi agents useful in methods of treating Beta-ENaC-related diseases such as cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension, using a therapeutically effective amount of a RNAi agent to Beta-ENaC.
Abstract:
The present disclosure relates to methods of treating heat shock factor 1 (HSF1)-related diseases such as cancer and viral diseases, using a therapeutically effective amount of a RNAi agent to HSF.
Abstract:
The present disclosure relates to RNAi agents useful in methods of treating KRAS-related diseases such as a proliferative disease, including without limitation a solid or liquid cancer, adenocarcinoma, colorectal cancer, advanced and/or metastatic colorectal cancer, colon cancer, lung, non-small cell lung cancer and lung adenocarcinoma, acute myelogenous lung, bladder, brain, breast, cervical, endometrial, gastric, head and neck, kidney, leukemia, myelodysplastic syndrome, myeloid leukemia, liver, melanoma, ovarian, pancreatic, prostate, testicular, thyroid cancers, and cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome, and similar and related diseases, using a therapeutically effective amount of a RNAi agent to KRAS.
Abstract:
The invention relates to double-stranded ribonucleic acid (dsRNA) targeting an APOC3 gene, and methods of using the dsRNA to inhibit expression of APOC3.
Abstract:
The present invention relates to methods and kits for detecting apoptotic cells in a live nematode by exposing the live nematode to a vital dye that stains apoptotic cells, and detecting the apoptotic cells. Applications of this assay include methods of identifying agents, conditions or genes that modulate apoptosis. The present invention also includes methods of screening for mutated nematodes that exhibit altered apoptotic cell death.
Abstract:
One aspect of the present invention relates to double-stranded RNA (dsRNA) agent capable of inhibiting the expression of a target gene. Other aspects of the invention relate to pharmaceutical compositions comprising these dsRNA molecules suitable for therapeutic use, and methods of inhibiting the expression of a target gene by administering these dsRNA molecules, e.g., for the treatment of various disease conditions.
Abstract:
The present disclosure relates to methods of treating EPAS1-related diseases such as cancer, metastases, astrocytoma, bladder cancer, breast cancer, chondrosarcoma, colorectal carcinoma, gastric carcinoma, glioblastoma, head and neck squamous cell carcinoma, hepatocellular carcinoma, lung adenocarcinoma, neuroblastoma, non-small cell lung cancer, melanoma, multiple myeloma, ovarian cancer, rectal cancer, renal cancer, clear cell renal cell carcinoma (and metastases of this and other cancers), gingivitis, psoriasis, Kaposi's sarcoma-associated herpesvirus, preemclampsia, inflammation, chronic inflammation, neovascular diseases, and rheumatoid arthritis, using a therapeutically effective amount of a RNAi agent to EPAS1.