Abstract:
Provided are anodes for use in electrochemical cells, wherein the anode comprises an anode active layer comprising lithium and a polymer anode substrate comprising a polymer film layer and a protective crosslinked polymer layer, in which the protective crosslinked polymer layer is in contact with the anode active layer on the side opposite to the surface in contact with the polymer film layer. The present invention also pertains to methods for forming such anodes and electrochemical cells comprising such anodes. The polymer film layer may be a terephthalate, a naphthalate, or an isophthalate, i.e. a polyester film. The protective crosslinked polymer layer may consist of acrylate polymer.
Abstract:
The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.
Abstract:
Disclosed is an electrolyte for an electrochemical cell wherein the electrolyte includes a solvent mixture comprising a dioxolane and one or more of 1,2-dialkoxyalkanes of 5 or 6 carbon atoms and/or 1,3-dialkoxyalkanes of 5 or 6 carbon atoms. Also disclosed are cells and batteries including the electrolyte. An electrochemical cell including the electrolyte preferably has an anode that includes lithium and a cathode including an electroactive sulfur-containing material.
Abstract:
Disclosed is an additive for an electrochemical cell wherein the additive includes an N-O bond. The additive is most preferably included in a nonaqueous electrolyte of the cell. Also disclosed are cells and batteries including the additive, and methods of charging the batteries and cells. An electrochemical cell including the additive preferably has an anode that includes lithium and a cathode including an electroactive sulfur-containing material.
Abstract:
A tab for use with an electrochemical cell is designed so that it can be replicated relatively easily in an automated manufacturing process and/or so it can be properly positioned on an electrochemical cell utilizing an automated process. The tab preferably includes a contact lead (102), a neutral lead (104) and one or more contact strips (108) connecting the contact lead and the neutral lead.
Abstract:
An anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the insitu deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
Abstract:
Disclosed is an electrochemical cell comprising a lithium anode and a sulfur-containing cathode and a non-aqueous electrolyte. The cell exhibits high utilization of the electroactive sulfur-containing material of the cathode and a high charge-discharge efficiency.
Abstract:
The present invention pertains to composite cathodes suitable for use in an electrochemical cell, said cathodes comprising: (a) an electroactive sulfur-containing cathode material, wherein said electroactive sulfur-containing cathode material, in its oxidized state, comprises a polysulfide moiety of the formula -Sm-, wherein m is an integer equal to or greater than 3; and (b) an electroactive transition metal chalcogenide composition, which encapsulates said electroactive sulfur-containing cathode material, and which retards the transport of anionic reduction products of said electroactive sulfur-containing cathode material, said electroactive transition metal chalcogenide composition comprising an electroactive transition metal chalcogenide having the formula MjYk(OR)1, wherein: M is a transition metal; Y is the same or different at each occurrence and is oxygen, sulfur, or selenium; R is an organic group and is the same or different at each occurrence; j is an integer ranging from 1 to 12; k is a number ranging from 0 to 72; and l is a number ranging from 0 to 72, with the proviso that k and l cannot both be 0. The present invention also pertains to methods of making such composite cathodes, cells comprising such composite cathodes, and methods of making such cells.
Abstract:
The present invention provides a polymer coating method. In the method, in a vacuum chamber, a low temperature monomer evaporation chamber is used to heat a liquid monomer and a cooled substrate at a temperature lower than the liquid monomer reservoir or vapor. The liquid monomer is allowed to condense on the cooled substrate surface where it is polymerized by a radiation source. The process depends on the vapor pressure difference between liquid in the monomer source and liquid condensed on the surface of the cooled substrate. The film thickness is dependent on the temperature difference between the monomer reservoir and the substrate, and the time that is required to move the coated substrate from the evaporation chamber to the cure station. The method is suitable for forming very thin, uniform, pinhole-free, polymer coatings from a variety of monomers, having at least two olefinic groups per molecule, on a variety of substrates.
Abstract:
Provided is a nonaqueous electrolyte element for use in secondary battery cells which comprises an effective lithium stripping enhancing amount of one or more soluble materials, such as a lithium polysulfide, which increases the lithium stripping efficiency. Also provided is a secondary lithium battery cell comprising said nonaqueous electrolyte element. Such a nonaqueous electrolyte element can be advantageously used in the manufacture of secondary electric-current producing cell elements, and provides many advantages in achieving extended cycle life and increased safety of secondary lithium batteries.