Abstract:
This invention relates to organic salt compositions useful in the preparation of organoclay compositions, polymer-organoclay composite compositions, and methods for the preparation of polymer nanocomposites. In one embodiment, the present invention provides a method of making a polymer-organoclay composite composition, said method comprising melt mixing a quaternary organoclay composition comprising alternating inorganic silicate layers and organic layers, said organic layers comprising a quaternary organic cation with a polymeric resin comprising at least one polymer selected from the group consisting of polyamides, polyesters, polyarylene sulfides, polyarylene ethers, polyether sulfones, polyether ketones, polyether ether ketones, polyphenylenes, and polyphenylenes said polymeric resin being substantially free of polyetherimides; said melt mixing being carried out at a temperature in a range between about 300 °C and about 450 °C to provide a polymer-organoclay composite composition, said polymer-organoclay composite composition being characterized by a percent exfoliation of at least 10 percent.
Abstract:
A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.
Abstract:
A solvent cast film comprises a polyimide comprising structural units derived from polymerization of a dianhydride component comprising a dianhydride selected from the group consisting of 3,4'-oxydiphthalic dianhydride, 3,3'-oxydiphthalic dianhydride, 4,4'-oxydiphthalic dianhydride, and combinations thereof, with a diamine component wherein the polyimide has a glass transition temperature of at least 190°C; wherein the film has a coefficient of thermal expansion of less than 60 ppm/°C, a thickness from 0.1 to 250 micrometers, and less than 5% residual solvent by weight; wherein the polyimide has less than 15 molar % of structural units derived from a member selected from the group consisting of biphenyltetracarboxylic acid, a dianhydride of biphenyltetracarboxylic acid, an ester of biphenyltetracarboxylic acid, and a combination thereof.
Abstract:
A solvent cast film comprises a polyimide comprising structural units derived from polymerization of a dianhydride component comprising a dianhydride selected from the group consisting of 3,4'-oxydiphthalic dianhydride, 3,3'-oxydiphthalic dianhydride, 4,4'-oxydiphthalic dianhydride, and combinations thereof, with a diamine component comprising 4,4'-diaminodiphenylsulfone; wherein the polyimide has a glass transition temperature from 190°C to 400°C; and wherein the film has a coefficient of thermal expansion of less than 60 ppm/°C, a thickness from 0.1 to 250 micrometers, endless than 5% residual solvent by weight.
Abstract:
An article comprises a solvent cast film comprising a polyetherimide comprising structural units derived from a dianhydride component selected from the group consisting of 3,4'-oxydiphthalic anhydride, 3,3'-oxydiphthalic anhydride, 4,4'- oxydiphthalic anhydride, and combinations thereof, and a diamine component. The polyetherimide has a glass transition temperature that is at least 1900C. The film has a coefficient of thermal expansion of less than 60 ppm/°C, a thickness from 0.1 to 250 micrometers, and less than 5% residual solvent by weight. The film has less than 15 molar % of a member selected from the group consisting of biphenyltetracarboxylic acid, dianhydrides of biphenyltetracarboxylic acid, esters of biphenyltetracarboxylic acid, and combinations thereof.
Abstract:
In one embodiment, the present invention provides a method of making a polymer- organoclay composite composition comprising (a) contacting under condensation polymerization conditions a first monomer, a second monomer, a solvent, and an organoclay composition, said organoclay composition comprising alternating inorganic silicate layers and organic layers, to provide a first polymerization reaction mixture, wherein one of said first monomer and second monomers is a diamine and the the other is an dianhydride; (b) carrying out a stoichiometry verification step on the first polymerization reaction mixture; (c) optionally adding additional reactant (monomer 1, monomer 2, or chainstopper) to the first polymerization reaction mixture to provide a second polymerization reaction mixture; and (d) removing solvent from the first polymerization reaction mixture or the second polymerization reaction mixture to provide a first polymer-organoclay composite composition comprising a polymer component and an organoclay component wherein the organoclay component is at least 10% exfoliated.
Abstract:
This invention relates to organic salt compositions useful in the preparation of organoclay compositions, polymer-organoclay composite compositions, and methods for the preparation of polymer nanocomposites. In one embodiment, the present invention provides a method of making a polymer-organoclay composite composition, said method comprising melt mixing a quaternary organoclay composition comprising alternating inorganic silicate layers and organic layers, said organic layers comprising a quaternary organic cation with a polyetherimide composition; said melt mixing being carried out at a temperature in a range between about 300°C and about 450°C to provide a polymer-organoclay composite composition, said polymer-organoclay composite composition being characterized by a percent exfoliation of at least 10 percent.
Abstract:
This invention relates to organic salt compositions useful in the preparation of organoclay compositions, polymer-organoclay composite compositions, and methods for the preparation of polymer nanocomposites. In one embodiment, the present invention provides a polymer-organoclay composite composition comprising (a) a polymeric resin; and (b) an organoclay composition comprising alternating inorganic silicate layers and organic layers, said organic layers comprising a quaternary phosphonium cation having structure X wherein Ar 1 , Ar 2 , and Ar 3 are independently C 2 -C 50 aromatic radicals; Ar 4 is a bond or a C 2 -C 50 aromatic radical; "a" is a number from 1 to about 200; "c" is a number from 0 to 3; R 1 is independently at each occurrence a halogen atom, a C 1 -C 20 aliphatic radical, a C 5 -C 20 cycloaliphatic radical, or a C 2 -C 20 aromatic radical; and R 2 is a halogen atom, a C 1 -C 20 aliphatic radical, a C 5 -C 20 cycloaliphatic radical, a C 2 -C 50 aromatic radical, or a polymer chain.
Abstract:
Disclosed herein is a polyketal adduct obtained by forming an ester between a hydrocarbon polyol and a ketocarboxylic acid to produce an intermediate polyketocarboxylic ester. The intermediate polyketocarboxylic ester can be purified via crystallization to achieve purities of greater than 99.0% and then ketalized to produce the polyketal adduct, which can be used in polymer compositions. The polyketal adduct I is obtained at high purity and at high yield.
Abstract:
Disclosed herein is a polyketal adduct obtained by forming an ester between a hydrocarbon polyol and a ketocarboxylic acid to produce an intermediate polyketocarboxylic ester. The intermediate polyketocarboxylic ester can be purified via crystallization to achieve purities of greater than 99.0% and then ketalized to produce the polyketal adduct, which can be used in polymer compositions. The polyketal adduct I is obtained at high purity and at high yield.