Abstract:
Electronic devices may be provided that contain flexible displays and internal components. An internal component may be positioned under the flexible display. The internal component may be an output device such as a speaker that transmits sound through the flexible display or an actuator that deforms the display in a way that is sensed by a user. The internal component may also be a microphone or pressure sensor that receives sound or pressure information through the flexible display. Structural components may be used to permanently or temporarily deform the flexible display to provide tactile feedback to a user of the device. Electronic devices may be provided with concave displays or convex displays formed from one or more flexible layers including a flexible display layer. Portions of the flexible display may be used as speaker membranes for display-based speaker structures.
Abstract:
A modular material antenna assembly is provided that includes an antenna block having a portion with a shape that interlocks with a corresponding portion of an electrically non-conductive frame and secures the antenna block to the electrically non-conductive frame. The electrically non-conductive frame is attached to an interior of an electrically conductive housing so that the electrically non-conductive frame and the electrically conductive housing form an integrated structure. An antenna flex is then mechanically secured to the antenna block. The antenna flex may also be electrically connected to a circuit board. The frame is designed to support a cover glass for the portable electronic device and may be affixed to a housing. The dielectric constant of the antenna block is substantially less than the dielectric constant of the frame.
Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer by laser drilling. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. Components such as flexible printed circuits, integrated circuits, connectors, and other circuitry may be mounted to the contacts on the rear surface of the display.
Abstract:
A tablet device with a flexible cover is disclosed. Thin flexible display technology can be integrated into the flexible cover without affecting the overall form factor of the cover or tablet device. Adding the integrated display to the flexible cover greatly enhances the overall functionality of the tablet device.
Abstract:
A resistive force sensor with capacitive discrimination is disclosed. According to an example of the disclosure, a sensor is directed to detect resistance and capacitance in an alternating fashion, the resistance indicating a force being applied to an input area of a device, and the capacitance indicating a proximity of a body part to the input area of the device, and the detected resistance and capacitance are utilized to determine whether the body part has pressed the input area of the device.
Abstract:
Combined force and proximity sensing is disclosed. One or more sensors can concurrently sense a force applied by an object on a device surface and a proximity of the object to the surface. In an example, a single sensor can sense both force and proximity via a resistance change and a capacitance change, respectively, at the sensor. In another example, multiple sensors can be used, where one sensor can sense force via either a resistance change or a capacitance change and another sensor can sense proximity via a capacitance change.
Abstract:
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio -frequency transceiver circuitry and antenna structures. The antenna structures may contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures. Adhesive may be interposed between the planar structures and the antenna resonating elements.
Abstract:
A resistive force sensor with capacitive discrimination is disclosed. According to an example of the disclosure, a sensor is directed to detect resistance and capacitance in an alternating fashion, the resistance indicating a force being applied to an input area of a device, and the capacitance indicating a proximity of a body part to the input area of the device, and the detected resistance and capacitance are utilized to determine whether the body part has pressed the input area of the device.
Abstract:
Split jack assemblies are constructed with a tubeless pin block. Elimination (or split) of the tube, or more particularly, a tube that is an integrally formed part of the pin block form the pin block allows for the use of a tubeless pin block design that results in a jack assembly having smaller overall dimensions than a conventional jack assembly constructed to accommodate a plug of the same dimensions. The tubeless pin block can be used in conjunction with a tube sleeve or with a curved surface of a housing for an electronic device, or both to provide a plug receptacle of the split jack assembly.
Abstract:
A modular material antenna assembly is provided that includes an antenna block having a portion with a shape that interlocks with a corresponding portion of an electrically non-conductive frame and secures the antenna block to the electrically non-conductive frame. The electrically non-conductive frame is attached to an interior of an electrically conductive housing so that the electrically non-conductive frame and the electrically conductive housing form an integrated structure. An antenna flex is then mechanically secured to the antenna block. The antenna flex may also be electrically connected to a circuit board. The frame is designed to support a cover glass for the portable electronic device and may be affixed to a housing. The dielectric constant of the antenna block is substantially less than the dielectric constant of the frame.