Abstract:
There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
Abstract:
The present invention relates to modifying the properties of a metal matrix composite body by a post formation process treatment and/or a substantially contiguous modification treatment. The post formation process treatment may be applicable to a variety of metal matrix composite bodies produced by various techniques, and is particularly applicable to modifying the properties of a metal matrix composite body produced by a spontaneous infiltration technique. The substantially contiguous modification process may also be used primarily in conjunction with metal matrix composite bodies produced according to a spontaneous infiltration technique. Particularly, at least a portion of the matrix metal of the metal matrix composite body and/or the filler material of the metal matrix composite body is modified or altered during and/or after the formation process.
Abstract:
This invention relates generally to the fabrication of materials for use as tools (22) in various applications. Specific emphasis is placed upon certain ceramic matrix composite materials and metal matrix composite materials for use as tools as well as certain ceramic matrix composite and/or metal matrix composite coatings on substrate materials, also for use as tools. This invention makes specific reference to a number of different materials for use as tools in the molding of thermoplastic materials (e.g., polymers, plastics, ceramics, glasses, metals) with particular emphasis being directed to the thermoplastic molding of plastics or polymers.
Abstract:
The present invention relates to a novel process for forming a filler material which can be used in various metal matrix composite formation processes for forming metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. The amount of matrix metal provided is sufficient only to coat, to a desired thickness, substantially all of the filler material. The coated filler material is thereafter comminuted for use in any desired metal matrix composite formation process.
Abstract:
The present invention relates to a novel process for forming thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the application of any pressure or vacuum. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casing, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal.
Abstract:
The present invention relates to a novel process for forming a filler material which can be used in various metal matrix composite formation processes for forming metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. The amount of matrix metal provided is sufficient only to coat, to a desired thickness, substantially all of the filler material. The coated filler material is thereafter comminuted for use in any desired metal matrix composite formation process.