Abstract:
The presently disclosed subject matter provides methods, systems, and computer program products for optimizing a probe geometry for spectroscopic measurement in a turbid medium. According to one method, a probe geometry comprising one emitting entity for emitting electromagnetic radiation into a turbid medium and at least on collecting entity for collecting the electromagnetic radiation that has interacted with the turbid medium is selected. A simulation is performed with inputs of the probe geometry and a plurality of sets of optical property values associated with the turbid medium to generate output comprising optical parameter values measured by the probe geometry for each set of input optical property values. The measured optical parameter values are input to an inversion algorithm to produce corresponding optical properties as output. The produced optical properties are compared with optical properties known to correspond to the measured optical parameter values and a degree of matching between the produced optical properties and the known optical properties is determined. The simulation and inversion steps are repeated for a plurality of additional probe geometries. Each additional probe geometry differs from the previously tested probe geometry in at least one property. The property may be a quantity of collecting entities, a diameter of at least one emitting or collecting entity, a linear between the emitting and collecting entities, or combinations thereof. An optimization algorithm is applied at each iteration to select a probe geometry such that the resulting degree of matching will converge to an optimum value. An optimal geometry is selected based on the degree of matching determined for each geometry.
Abstract:
The presently disclosed subject matter provides methods, systems, and computer program products for optimizing a probe geometry for spectroscopic measurement in a turbid medium. A probe geometry comprising one emitting entity for emitting electromagnetic radiation into a turbid medium and at least one collecting entity for collecting the electromagnetic radiation that has interacted with the turbid medium is selected. A simulation is performed with inputs of the probe geometry and a plurality of sets of optical property values associated with the turbid medium to generate output comprising optical parameter values measured by the probe geometry for each set of input optical property values. The measured optical parameter values are input to an Inversion algorithm to produce corresponding optical properties as output and are compared to reference values. The simulation and inversion steps are repeated and compared for a plurality of additional probe geometries and an optimal geometry is selected.
Abstract:
A composite structural material suitable, for example, as a replacement for wooden boards, sheets, or posts, is disclosed. It comprises a dimensionally stable core material substantially surrounded by a dimensionally stable, laminar covering that is adherent to the core material. The laminar covering is comprised of at least one band of substantially parallel reinforcing cords bonded to at least one layer of a dimensionally stable web material selected from the group consisting of rigidified paper and rigidified cloth. Preferably the band of reinforcing cords is sandwiched between two layers of rigidified paper or cloth. The core material can be, for example, a foamed synthetic resin with or without filler. A continuous process for manufacturing the material is disclosed.
Abstract:
The subject matter described herein includes a method for modeling fluorescence in turbid media and methods and systems for using the model to determine intrinsic fluorescence of turbid media. According to one aspect, a method for modeling fluorescence of a turbid medium and for using the model to determine intrinsic fluorescence in the turbid medium is provided. The method includes illuminating a turbid medium of interest with an electromagnetic radiation source using a probe of a particular geometry and detecting measured fluorescence for the turbid medium using the probe. At least one set of Monte Carlo simulations is run to determine an escape energy probability map and an absorbed energy density map for the turbid medium. An indication of the intrinsic fluorescence of the turbid medium is determined using the escape probability density map and the absorbed energy density map in a manner that accounts for the geometry of the probe.
Abstract:
A composite structural material suitable, for example, as a replacement for wooden boards, sheets, or posts, is disclosed. It comprises a dimensionally stable core material substantially surrounded by a dimensionally stable, laminar covering that is adherent to the core material. The laminar covering is comprised of at least one band of substantially parallel reinforcing cords bonded to at least one layer of a dimensionally stable web material selected from the group consisting of rigidified paper and rigidified cloth. Preferably the band of reinforcing cords is sandwiched between two layers of rigidified paper or cloth. The core material can be, for example, a foamed synthetic resin with or without filler. A continuous process for manufacturing the material is disclosed.
Abstract:
The subject matter described herein includes a method for modeling fluorescence in turbid media and methods and systems for using the model to determine intrinsic fluorescence of turbid media. According to one aspect, a method for modeling fluorescence of a turbid medium and for using the model to determine intrinsic fluorescence in the turbid medium is provided. The method includes illuminating a turbid medium of interest with an electromagnetic radiation source using a probe of a particular geometry and detecting measured fluorescence for the turbid medium using the probe. At least one set of Monte Carlo simulations is run to determine an escape energy probability map and an absorbed energy density map for the turbid medium. An indication of the intrinsic fluorescence of the turbid medium is determined using the escape probability density map and the absorbed energy density map in a manner that accounts for the geometry of the probe.