Abstract:
A torque coupling for a rotor head of a rotary-wing aircraft is configured for rotation with a mast and for causing rotation of an attached yoke. The coupling has trunnions that rotate with the mast and extend generally radially. Pad-bearing assemblies each have a central member coupled to one of the trunnions with a laminated spherical bearing and have laminated pad bearings affixed to opposing sides of the central member. The laminated bearings have alternating rigid and elastomeric layers. A bearing mount is affixed to each pad bearing and is connected to a yoke for rotating the yoke with the mast. The pad-bearing assemblies allow for relative motion between each central member and the associated trunnion and between each central member and the bearing mounts through elastic shear deformation, and this allows for gimballing of the attached yoke relative to the mast.
Abstract:
A constant-velocity joint is configured for use with a rotary-wing aircraft having at least one engine. A driver is coupled to an output shaft of the engine, the driver being rotatable about an axis. A yoke is at least partially rotatable relative to the driver about a first center of rotation, the center of rotation being located on the axis. A plurality of upright link couple the yoke to the driver, each ling being translatable relative to the yoke, the driver, or both. Each link is also rotatable relative to the yoke, the driver, or both, about a second center of rotation.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system includes an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween. At least one of the upper and lower yoke surfaces has a layer of cushioning material positioned thereon and secured thereto. An alternate embodiment includes an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween and directly contacting the support plates wherein one of the curved surfaces is a non-circular arc that does not form part of the circumference of a circle. Another alternate embodiment includes a similar assembly having a twist-shank type of yoke for providing rotation of attached blades about their respective pitch axes.
Abstract:
A vibration attenuator for an aircraft has at least one weight mounted in a rotating system of a rotor hub of the aircraft, each weight being rotatable about an axis of rotation of the hub relative to the hub and to each other weight. Drive means are provided for rotating each weight about the axis of rotation at a selected speed for creating oscillatory shear forces that oppose and attenuate rotor-induced vibrations having a selected frequency.
Abstract:
A centrifugal force bearing having a means for providing a steady pitching moment is disclosed. The centrifugal force bearing may optionally comprise a coning means. A rotor system having the centrifugal force bearing is disclosed. A rotary-wing aircraft having the centrifugal force bearing is disclosed.
Abstract:
A centrifugal force bearing having a means for providing a steady pitching moment is disclosed. The centrifugal force bearing may optionally comprise a coning means. A rotor system having the centrifugal force bearing is disclosed. A rotary-wing aircraft having the centrifugal force bearing is disclosed.
Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A rotor-hub for a rotary-wing aircraft is disclosed. The rotor-hub comprises a yoke comprising a plurality of yoke arms and a plurality of yoke straps, wherein the yoke arms are joined together by the yoke straps, and wherein a plurality of inner walls of the yoke define a central void space. A pitch horn is movably connected to the yoke and a portion of the pitch horn is located within the central void space. A connecting shell is fixedly attached to the yoke.
Abstract:
A blade-pitch control system has a swashplate configured for continuous rotation with an associated rotor and mast, and at least one link connects the swashplate to each blade of the rotor. The swashplate provides for collective control of the pitch angle of the blades through selective rotation of the swashplate about a swashplate axis while the swashplate is rotating with the rotor and mast. The system can be configured to provide for cyclic control of the pitch angle of the blades through planar translation of the swashplate or through tilting of the swashplate about axes generally perpendicular to the swashplate axis.