Abstract:
A constant-velocity drive system for an aircraft rotor has a gimbal mechanism and a differential torque-combining mechanism. The gimbal mechanism has gimbals driven in rotation by a rotor mast about a mast axis, the gimbals providing for gimballing relative to the mast about gimbal axes generally perpendicular to the mast axis. The differential torque-combining mechanism is connected to the gimbal mechanism and configured to be driven in rotation about the mast axis by the gimbal mechanism. The differential mechanism is capable of gimballing relative to the mast about the gimbal axes, the differential torque-combining mechanism having an output component attached to a yoke of the rotor for driving the yoke in rotation with the differential torque- combining mechanism.
Abstract:
A constant-velocity joint is configured for use with a rotary-wing aircraft having at least one engine. A driver is coupled to an output shaft of the engine, the driver being rotatable about an axis. A yoke is at least partially rotatable relative to the driver about a first center of rotation, the center of rotation being located on the axis. A plurality of upright link couple the yoke to the driver, each ling being translatable relative to the yoke, the driver, or both. Each link is also rotatable relative to the yoke, the driver, or both, about a second center of rotation.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system includes an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween. At least one of the upper and lower yoke surfaces has a layer of cushioning material positioned thereon and secured thereto. An alternate embodiment includes an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween and directly contacting the support plates wherein one of the curved surfaces is a non-circular arc that does not form part of the circumference of a circle. Another alternate embodiment includes a similar assembly having a twist-shank type of yoke for providing rotation of attached blades about their respective pitch axes.
Abstract:
A yoke for a rotary wing aircraft rotor system has a plurality of arms, each arm having a root. Each root has a notched portion configured to allow passage of a portion of a blade-pitch control system through the notched portion.
Abstract:
A yoke for a rotary wing aircraft rotor system has a plurality of arms, each arm having a root. Each root has a notched portion configured to allow passage of a portion of a blade-pitch control system through the notched portion.
Abstract:
A rotor-hub for a rotary-wing aircraft is disclosed. The rotor-hub comprises a yoke comprising a plurality of yoke arms and a plurality of yoke straps, wherein the yoke arms are joined together by the yoke straps, and wherein a plurality of inner walls of the yoke define a central void space. A pitch horn is movably connected to the yoke and a portion of the pitch horn is located within the central void space. A connecting shell is fixedly attached to the yoke.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system, the assembly including an upper support plate (22) having an upper curved surface (37) , a lower support plate (24) having a lower curved surface (37) , and a yoke (120) positioned therebetween. At least one of the upper and lower yoke surfaces (37) having a layer of cushioning material (56) positioned thereon and secured thereto. The layer of cushioning material (56) extending along and following the general contour of yoke surface (37) , and the layer of cushioning material (56) directly contacting a support plate (22,24) . Another embodiment is an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate (22) having an upper curved surface (27) , a lower support plate (24) having a lower curved surface (37) , and a yoke (120) positioned therebetween and directly contacting the support plates wherein one of the curved surfaces (37) is a non-circular arc that does not form part of the circumference of a circle.
Abstract:
A pitch control system for blades on a rotor of an aircraft has a gimballing rotor hub and a plurality of step-over arms connected to the hub and capable of pivoting relative to the hub about a pivot axis. Each of a plurality of pitch links connects one of the step-over arms to a flight control system for pivoting the connected step-over arm about the pivot axis and relative to the hub in response to inputs from the control system. Each of a plurality of step-over links connects one of the step-over arms to one of the blades for rotating the associated blade about the pitch axis in response to pivoting of the associated step-over arm.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system includes an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween. At least one of the upper and lower yoke surfaces has a layer of cushioning material positioned thereon and secured thereto. An alternate embodiment includes an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween and directly contacting the support plates wherein one of the curved surfaces is a non-circular arc that does not form part of the circumference of a circle. Another alternate embodiment includes a similar assembly having a twist-shank type of yoke for providing rotation of attached blades about their respective pitch axes.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system, the assembly including an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween. At least one of the upper and lower yoke surfaces having a layer of cushioning material positioned thereon and secured thereto. The layer of cushioning material extending along and following the general contour of yoke surface, and the layer of cushioning material directly contacting a support plate. Another embodiment is an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween and directly contacting the support plates wherein one of the curved surfaces is a non-circular arc that does not form part of the circumference of a circle.